Exact Two-Component TDDFT with Simple Two-Electron Picture-Change Corrections: X-ray Absorption Spectra Near L- and M-Edges of Four-Component Quality at Two-Component Cost
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36722848
PubMed Central
PMC9923756
DOI
10.1021/acs.jpca.2c08307
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivities. However, the theoretical modeling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modeling XAS.
Zobrazit více v PubMed
Besley N. A. Density Functional Theory Based Methods for the Calculation of X-ray Spectroscopy. Acc. Chem. Res. 2020, 53, 1306–1315. 10.1021/acs.accounts.0c00171. PubMed DOI
Loh Z.-H.; Leone S. R. Capturing Ultrafast Quantum Dynamics with Femtosecond and Attosecond X-ray Core-Level Absorption Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 292–302. 10.1021/jz301910n. PubMed DOI
Zhang K.; Lin M.-F.; Ryland E. S.; Verkamp M. A.; Benke K.; De Groot F. M.; Girolami G. S.; Vura-Weis J. Shrinking the synchrotron: Tabletop extreme ultraviolet absorption of transition-metal complexes. J. Phys. Chem. Lett. 2016, 7, 3383–3387. 10.1021/acs.jpclett.6b01393. PubMed DOI
Kadek M.; Konecny L.; Gao B.; Repisky M.; Ruud K. X-ray absorption resonances near L2,3-edges from Real-Time Propagation of the Dirac-Kohn-Sham Density Matrix. Phys. Chem. Chem. Phys. 2015, 17, 22566–22570. 10.1039/C5CP03712C. PubMed DOI
Vidal M. L.; Pokhilko P.; Krylov A. I.; Coriani S. Equation-of-motion coupled-cluster theory to model L-edge x-ray absorption and photoelectron spectra. J. Phys. Chem. Lett. 2020, 11, 8314–8321. 10.1021/acs.jpclett.0c02027. PubMed DOI
Kasper J. M.; Stetina T. F.; Jenkins A. J.; Li X. Ab initio methods for L-edge x-ray absorption spectroscopy. Chem. Phys. Rev. 2020, 1, 011304.10.1063/5.0029725. DOI
Liu W. Ideas of relativistic quantum chemistry. Mol. Phys. 2010, 108, 1679–1706. 10.1080/00268971003781571. DOI
Saue T. Relativistic Hamiltonians for chemistry: a primer. ChemPhysChem 2011, 12, 3077–3094. 10.1002/cphc.201100682. PubMed DOI
Douglas M.; Kroll N. M. Qunatum Electrodynamical Corrections to the Fine Structure of Helium. Ann. Phys. 1974, 82, 89–155. 10.1016/0003-4916(74)90333-9. DOI
Hess B. A. Applicability of the no-pair equation with free-paericle projection operators to atomic and molecular structure calculations. Phys. Rev. A 1985, 32, 756–763. 10.1103/PhysRevA.32.756. PubMed DOI
Wolf A.; Reiher M.; Hess B. A. The generalized Douglas-Kroll transformation. J. Chem. Phys. 2002, 117, 9215–9226. 10.1063/1.1515314. PubMed DOI
Chang C.; Pelissier M.; Durand P. Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory. Phys. Scr. 1986, 34, 394–404. 10.1088/0031-8949/34/5/007. DOI
Lenthe E. V.; Baerends E. J.; Snijders J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610. 10.1063/1.466059. DOI
Dyall K. G. Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation. J. Chem. Phys. 1997, 106, 9618–9628. 10.1063/1.473860. DOI
Cremer D.; Zou W.; Filatov M. Dirac-exact relativistic methods: the normalized elimination of the small component method. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 436–467. 10.1002/wcms.1181. DOI
Heully J. L.; Lindgren I.; Lindroth E.; Lundqvist S.; Martensson-Pendrill A. M. Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure. J. Phys. B: At. Mol. Phys. 1986, 19, 2799–2815. 10.1088/0022-3700/19/18/011. DOI
Jensen H. J. A.Douglas-Kroll the Easy Way. Presented at the Conference on Relativistic Effects in Heavy Elements - REHE 2005, Mülheim, Germany, April 2005.
Kutzelnigg W.; Liu W. Quasirelativistic theory equivalent to fully relativistic theory. J. Chem. Phys. 2005, 123, 241102.10.1063/1.2137315. PubMed DOI
Liu W.; Kutzelnigg W. Quasirelativistic theory. II. Theory at matrix level. J. Chem. Phys. 2007, 126, 114107.10.1063/1.2710258. PubMed DOI
Ilias M.; Saue T. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J. Chem. Phys. 2007, 126, 064102.10.1063/1.2436882. PubMed DOI
Liu W.; Peng D. Exact two-component Hamiltonians revisited. J. Chem. Phys. 2009, 131, 031104.10.1063/1.3159445. PubMed DOI
Konecny L.; Kadek M.; Komorovsky S.; Malkina O. L.; Ruud K.; Repisky M. Acceleration of Relativistic Electron Dynamics by Means of X2C Transformation: Application to the Calculation of Nonlinear Optical Properties. J. Chem. Theory Comput. 2016, 12, 5823–5833. 10.1021/acs.jctc.6b00740. PubMed DOI
Sikkema J.; Visscher L.; Saue T.; Iliaš M. The molecular mean-field approach for correlated relativistic calculations. J. Chem. Phys. 2009, 131, 124116.10.1063/1.3239505. PubMed DOI
Halbert L.; Vidal M. L.; Shee A.; Coriani S.; Severo Pereira Gomes A. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac–Coulomb (-Gaunt) Hamiltonian. J. Chem. Theory Comput. 2021, 17, 3583–3598. 10.1021/acs.jctc.0c01203. PubMed DOI
Blume M.; Watson R. E. Theory of spin-orbit coupling in atoms I. Derivation of the spin-orbit coupling constant. Proc. R. Soc. London A 1962, 270, 127–143. 10.1098/rspa.1962.0207. DOI
Blume M.; Watson R. E. Theory of spin-orbit coupling in atoms, II. Comparison of theory with experiment. Proc. R. Soc. London A 1963, 271, 565–578. 10.1098/rspa.1963.0036. DOI
Heß B. A.; Marian C. M.; Wahlgren U.; Gropen O. A Mean-Field Spin-Orbit Method Applicable to Correlated Wavefunctions. Chem. Phys. Lett. 1996, 251, 365.10.1016/0009-2614(96)00119-4. DOI
Schimmelpfennig B.AMFI, an Atomic Mean-Field Spin-Orbit Integral Program; University of Stockholm: Stockholm, 1996.
van Wüllen C.; Michauk C. Accurate and Efficient Treatment of Two-Electron Contributions in Quasirelativistic High-Order Douglas-Kroll Density-Functional Theory. J. Chem. Phys. 2005, 123, 204113.10.1063/1.2133731. PubMed DOI
Peng D.; Liu W.; Xiao Y.; Cheng L. Making Four- and Two-Component Relativistic Density Functional Methods Fully Equivalent Based on the Idea of from Atoms to Molecule. J. Chem. Phys. 2007, 127, 104106.10.1063/1.2772856. PubMed DOI
Boettger J. C. Approximate Two-Electron Spin-Orbit Coupling Term for Density-Functional-Theory DFT Calculations Using the Douglas-Kroll-Hess Transformation. Phys. Rev. B 2000, 62, 7809–7815. 10.1103/PhysRevB.62.7809. DOI
Filatov M.; Zou W.; Cremer D. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method. J. Chem. Phys. 2013, 139, 014106.10.1063/1.4811776. PubMed DOI
Knecht S.; Repisky M.; Jensen H. J. A.; Saue T. Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. J. Chem. Phys. 2022, 157, 114106.10.1063/5.0095112. PubMed DOI
Liu W.; Xiao Y. Relativistic time-dependent density functional theories. Chem. Soc. Rev. 2018, 47, 4481–4509. 10.1039/C8CS00175H. PubMed DOI
Besley N. A. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Comput. Mol. Sci. 2021, 11, e1527.10.1002/wcms.1527. DOI
Bagus P. S. Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions. Phys. Rev. 1965, 139, A619.10.1103/PhysRev.139.A619. DOI
Theilhaber J. Ab initio simulations of sodium using time-dependent density-functional theory. Phys. Rev. B 1992, 46, 12990–13003. 10.1103/PhysRevB.46.12990. PubMed DOI
Yabana K.; Bertsch G. Time-dependent local-density approximation in real time. Phys. Rev. B 1996, 54, 4484–4487. 10.1103/PhysRevB.54.4484. PubMed DOI
Casida M. E.Recent Advances In Density Functional Methods: Part I; World Scientific: Singapore, 1995; pp 155–192.
Casida M. E. Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct.: THEOCHEM 2009, 914, 3–18. 10.1016/j.theochem.2009.08.018. DOI
Oddershede J.; Jørgensen P.; Yeager D. L. Polarization propagator methods in atomic and molecular calculations. Comput. Phys. Rep. 1984, 2, 33–92. 10.1016/0167-7977(84)90003-0. DOI
Norman P.; Bishop D. M.; Jensen H. J. A.; Oddershede J. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J. Chem. Phys. 2001, 115, 10323–10334. 10.1063/1.1415081. DOI
Norman P.; Bishop D. M.; Jensen H. J. A.; Oddershede J. Nonlinear response theory with relaxation: The first-order hyperpolarizability. J. Chem. Phys. 2005, 123, 194103.10.1063/1.2107627. PubMed DOI
Cederbaum L. S.; Domcke W.; Schirmer J. Many-body theory of core holes. Phys. Rev. A 1980, 22, 206.10.1103/PhysRevA.22.206. DOI
Barth A.; Cederbaum L. S. Many-body theory of core-valence excitations. Phys. Rev. A 1981, 23, 1038.10.1103/PhysRevA.23.1038. DOI
Ågren H.; Carravetta V.; Vahtras O.; Pettersson L. G. Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem. Phys. Lett. 1994, 222, 75–81. 10.1016/0009-2614(94)00318-1. DOI
Ågren H.; Carravetta V.; Vahtras O.; Pettersson L. G. Direct SCF direct static-exchange calculations of electronic spectra. Theor. Chem. Acc. 1997, 97, 14–40. 10.1007/s002140050234. DOI
Ekström U.; Norman P.; Carravetta V. Relativistic four-component static-exchange approximation for core-excitation processes in molecules. Phys. Rev. A 2006, 73, 022501.10.1103/PhysRevA.73.022501. DOI
Stener M.; Fronzoni G.; de Simone M. d. Time dependent density functional theory of core electrons excitations. Chem. Phys. Lett. 2003, 373, 115–123. 10.1016/S0009-2614(03)00543-8. DOI
Ray K.; DeBeer George S.; Solomon E. I.; Wieghardt K.; Neese F. Description of the ground-state covalencies of the bis(dithiolato) transition-metal complexes from X-ray absorption spectroscopy and time-dependent density-functional calculations. Chem.—Eur. J. 2007, 13, 2783–2797. 10.1002/chem.200601425. PubMed DOI
Lopata K.; Van Kuiken B. E.; Khalil M.; Govind N. Linear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption. J. Chem. Theory Comput. 2012, 8, 3284–3292. 10.1021/ct3005613. PubMed DOI
South C.; Shee A.; Mukherjee D.; Wilson A. K.; Saue T. 4-Component relativistic calculations of L3 ionization and excitations for the isoelectronic species UO22+, OUN+ and UN2. Phys. Chem. Chem. Phys. 2016, 18, 21010–21023. 10.1039/C6CP00262E. PubMed DOI
Fransson T.; Burdakova D.; Norman P. K-and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory. Phys. Chem. Chem. Phys. 2016, 18, 13591–13603. 10.1039/C6CP00561F. PubMed DOI
Stetina T. F.; Kasper J. M.; Li X. Modeling L2,3-edge X-ray absorption spectroscopy with linear response exact two-component relativistic time-dependent density functional theory. J. Chem. Phys. 2019, 150, 234103.10.1063/1.5091807. PubMed DOI
Grofe A.; Li X. Relativistic nonorthogonal configuration interaction: application to L2,3-edge X-ray spectroscopy. Phys. Chem. Chem. Phys. 2022, 24, 10745–10756. 10.1039/D2CP01127A. PubMed DOI
Kehry M.; Franzke Y. J.; Holzer C.; Klopper W. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe-Salpeter equation. Mol. Phys. 2020, 118, e1755064.10.1080/00268976.2020.1755064. DOI
Komorovsky S.; Cherry P. J.; Repisky M. Four-component relativistic time-dependent density-functional theory using a stable noncollinear DFT ansatz applicable to both closed- and open-shell systems. J. Chem. Phys. 2019, 151, 184111.10.1063/1.5121713. PubMed DOI
Stanton R. E.; Havriliak S. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys. 1984, 81, 1910–1918. 10.1063/1.447865. DOI
Repisky M.; Komorovsky S.; Kadek M.; Konecny L.; Ekström U.; Malkin E.; Kaupp M.; Ruud K.; Malkina O. L.; Malkin V. G. ReSpect: Relativistic spectroscopy DFT program package. J. Chem. Phys. 2020, 152, 184101.10.1063/5.0005094. PubMed DOI
List N. H.; Saue T.; Norman P. Rotationally averaged linear absorption spectra beyond the electric-dipole approximation. Mol. Phys. 2017, 115, 63–74. 10.1080/00268976.2016.1187773. DOI
List N. H.; Melin T. R. L.; van Horn M.; Saue T. Beyond the electric-dipole approximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic theory. J. Chem. Phys. 2020, 152, 184110.10.1063/5.0003103. PubMed DOI
Scalmani G.; Frisch M. J. A new approach to noncollinear spin density functional theory beyond the local density approximation. J. Chem. Theory Comput. 2012, 8, 2193–2196. 10.1021/ct300441z. PubMed DOI
Bast R.; Jensen H. J. A.; Saue T. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization. Int. J. Quantum Chem. 2009, 109, 2091–2112. 10.1002/qua.22065. DOI
Konecny L.; Repisky M.; Ruud K.; Komorovsky S. Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations. J. Chem. Phys. 2019, 151, 194112.10.1063/1.5128564. PubMed DOI
Norman P.; Ruud K.; Saue T.. Principles and Practices of Molecular Properties: Theory, Modeling, and Simulations; Wiley-VCH: Chichester, U.K., 2018.
Villaume S.; Saue T.; Norman P. Linear complex polarization propagator in a four-component Kohn-Sham framework. J. Chem. Phys. 2010, 133, 064105.10.1063/1.3461163. PubMed DOI
Balasubramani S. G.; Chen G. P.; Coriani S.; Diedenhofen M.; Frank M. S.; Franzke Y. J.; Furche F.; Grotjahn R.; Harding M. E.; Hättig C.; et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107.10.1063/5.0004635. PubMed DOI PMC
Vícha J.; Patzschke M.; Marek R. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes. Phys. Chem. Chem. Phys. 2013, 15, 7740.10.1039/c3cp44440f. PubMed DOI
Vícha J.; Novotný J.; Straka M.; Repisky M.; Ruud K.; Komorovsky S.; Marek R. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches. Phys. Chem. Chem. Phys. 2015, 17, 24944–24955. 10.1039/C5CP04214C. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396–1396. 10.1103/PhysRevLett.78.1396. PubMed DOI
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Slater J. C. A simplification of the Hartree-Fock method. Phys. Rev. 1951, 81, 385–390. 10.1103/PhysRev.81.385. DOI
Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.10.1039/b508541a. PubMed DOI
Andrae D.; Häußermann U.; Dolg M.; Stoll H.; Preuß H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 1990, 77, 123–141. 10.1007/BF01114537. DOI
Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd. Theor. Chem. Acc. 2007, 117, 483–489. 10.1007/s00214-006-0174-5. PubMed DOI
Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg. Theor. Chem. Acc. 2004, 112, 403–409. 10.1007/s00214-004-0607-y. PubMed DOI
Dyall K. G.; Gomes A. S. Revised relativistic basis sets for the 5d elements Hf–Hg. Theor. Chem. Acc. 2010, 125, 97.10.1007/s00214-009-0717-7. DOI
Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr. Theor. Chem. Acc. 2007, 117, 491–500. 10.1007/s00214-006-0175-4. DOI
Dyall K. G. Relativistic and nonrelativistic finite nucleus optimized double zeta basis sets for the 4p, 5p and 6p elements. Theor. Chem. Acc. 1998, 99, 366–371. 10.1007/s002140050349. DOI
Dyall K. G. Relativistic quadruple-zeta and revised triple-zeta and double-zeta basis sets for the 4p, 5p, and 6p elements. Theor. Chem. Acc. 2006, 115, 441–447. 10.1007/s00214-006-0126-0. DOI
Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Kendall R. A.; Dunning T. H. Jr; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Woon D. E.; Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. 10.1063/1.464303. DOI
Konecny L.; Vicha J.; Komorovsky S.; Ruud K.; Repisky M. Accurate X-ray Absorption Spectra near L- and M-Edges from Relativistic Four-Component Damped Response Time-Dependent Density Functional Theory. Inorg. Chem. 2022, 61, 830–846. 10.1021/acs.inorgchem.1c02412. PubMed DOI PMC
Visscher L.; Dyall K. G. Dirac–Fock atomic electronic structure calculations using different nuclear charge distributions. At. Data Nucl. Data Tables 1997, 67, 207–224. 10.1006/adnd.1997.0751. DOI
Vosko S. H.; Wilk L.; Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58, 1200–1211. 10.1139/p80-159. DOI
Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. 10.1021/j100096a001. DOI
Fronzoni G.; Stener M.; Decleva P.; de Simone M.; Coreno M.; Franceschi P.; Furlani C.; Prince K. C. X-ray Absorption Spectroscopy of VOCl3, CrO2Cl2, and MnO3Cl: An Experimental and Theoretical Study. J. Phys. Chem. A 2009, 113, 2914–2925. 10.1021/jp808720z. PubMed DOI
George S. J.; Drury O. B.; Fu J.; Friedrich S.; Doonan C. J.; George G. N.; White J. M.; Young C. G.; Cramer S. P. Molybdenum X-ray absorption edges from 200 to 20,000 eV: The benefits of soft X-ray spectroscopy for chemical speciation. J. Inorg. Biochem. 2009, 103, 157–167. 10.1016/j.jinorgbio.2008.09.008. PubMed DOI PMC
Jayarathne U.; Chandrasekaran P.; Greene A. F.; Mague J. T.; DeBeer S.; Lancaster K. M.; Sproules S.; Donahue J. P. X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge. Inorg. Chem. 2014, 53, 8230–8241. 10.1021/ic500256a. PubMed DOI PMC
Boysen R. B.; Szilagyi R. K. Development of palladium L-edge X-ray absorption spectroscopy and its application for chloropalladium complexes. Inorg. Chim. Acta 2008, 361, 1047–1058. 10.1016/j.ica.2007.07.032. DOI
Tougerti A.; Cristol S.; Berrier E.; Briois V.; La Fontaine C.; Villain F.; Joly Y. XANES study of rhenium oxide compounds at the L1 and L3 absorption edges. Phys. Rev. B 2012, 85, 125136.10.1103/PhysRevB.85.125136. DOI
Butorin S. M.; Modin A.; Vegelius J. R.; Kvashnina K. O.; Shuh D. K. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy. J. Phys. Chem. C 2016, 120, 29397–29404. 10.1021/acs.jpcc.6b09335. DOI
Sanchez-Cano C.; Romero-Canelón I.; Geraki K.; Sadler P. J. Microfocus x-ray fluorescence mapping of tumour penetration by an organo-osmium anticancer complex. J. Inorg. Biochem. 2018, 185, 26–29. 10.1016/j.jinorgbio.2018.04.014. PubMed DOI
Harris T. V.; Szilagyi R. K.; McFarlane Holman K. L. Electronic structural investigations of ruthenium compounds and anticancer prodrugs. J. Biol. Inorg. Chem. 2009, 14, 891–898. 10.1007/s00775-009-0501-0. PubMed DOI