Accurate X-ray Absorption Spectra near L- and M-Edges from Relativistic Four-Component Damped Response Time-Dependent Density Functional Theory

. 2022 Jan 17 ; 61 (2) : 830-846. [epub] 20211227

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34958215

The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L2,3- and M4,5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L2,3-edge X-ray absorption spectra of [RuCl2(DMSO)2(Im)2] and [WCl4(PMePh2)2], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.

Zobrazit více v PubMed

Röntgen W. C. On a new kind of rays. Science 1896, 3, 227–231. 10.1126/science.3.59.227. PubMed DOI

Besley N. A. Density Functional Theory Based Methods for the Calculation of X-ray Spectroscopy. Acc. Chem. Res. 2020, 53, 1306–1315. 10.1021/acs.accounts.0c00171. PubMed DOI

Loh Z.-H.; Leone S. R. Capturing Ultrafast Quantum Dynamics with Femtosecond and Attosecond X-ray Core-Level Absorption Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 292–302. 10.1021/jz301910n. PubMed DOI

Zhang K.; Lin M.-F.; Ryland E. S.; Verkamp M. A.; Benke K.; De Groot F. M.; Girolami G. S.; Vura-Weis J. Shrinking the synchrotron: Tabletop extreme ultraviolet absorption of transition-metal complexes. J. Phys. Chem. Lett. 2016, 7, 3383–3387. 10.1021/acs.jpclett.6b01393. PubMed DOI

Joly Y.; Grenier S. In X-ray absorption and X-ray emission spectroscopy: Theory and applications; Van Bokhoven J., Lamberti C., Eds.; John Wiley & Sons, Ltd., 2016; pp 73–97.

Besley N. A.; Asmuruf F. A. Time-dependent density functional theory calculations of the spectroscopy of core electrons. Phys. Chem. Chem. Phys. 2010, 12, 12024.10.1039/c002207a. PubMed DOI

De Groot F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 2001, 101, 1779–1808. 10.1021/cr9900681. PubMed DOI

Bauer M. HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays?. Phys. Chem. Chem. Phys. 2014, 16, 13827–13837. 10.1039/C4CP00904E. PubMed DOI

Butorin S. M.; Kvashnina K. O.; Vegelius J. R.; Meyer D.; Shuh D. K. High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 8093–8097. 10.1073/pnas.1601741113. PubMed DOI PMC

Szlachetko J.; Nachtegaal M.; Sá J.; Dousse J.-C.; Hoszowska J.; Kleymenov E.; Janousch M.; Safonova O. V.; König C.; van Bokhoven J. A. High energy resolution off-resonant spectroscopy at sub-second time resolution: (Pt(acac)2) decomposition. Chem. Commun. 2012, 48, 10898–10900. 10.1039/c2cc35086f. PubMed DOI

Kavčič M.; Žitnik M.; Bučar K.; Mihelič A.; Marolt B.; Szlachetko J.; Glatzel P.; Kvashnina K. Hard x-ray absorption spectroscopy for pulsed sources. Phys. Rev. B 2013, 87, 07510610.1103/PhysRevB.87.075106. DOI

Kavčič M.; Budnar M.; Mühleisen A.; Gasser F.; Žitnik M.; Bučar K.; Bohinc R. Design and performance of a versatile curved-crystal spectrometer for high-resolution spectroscopy in the tender x-ray range. Rev. Sci. Instrum. 2012, 83, 03311310.1063/1.3697862. PubMed DOI

Llorens I.; Lahera E.; Delnet W.; Proux O.; Braillard A.; Hazemann J.-L.; Prat A.; Testemale D.; Dermigny Q.; et al. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. Rev. Sci. Instrum. 2012, 83, 06310410.1063/1.4728414. PubMed DOI

Seidler G.; Mortensen D.; Remesnik A.; Pacold J.; Ball N.; Barry N.; Styczinski M.; Hoidn O. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. Rev. Sci. Instrum. 2014, 85, 113906.10.1063/1.4901599. PubMed DOI

De Groot F.; Kotani A.. Core level spectroscopy of solids; CRC Press, 2008.

Laskowski R.; Blaha P. Understanding the L2,3 X-ray absorption spectra of early 3d transition elements. Phys. Rev. B 2010, 82, 205104.10.1103/PhysRevB.82.205104. DOI

Bunău O.; Calandra M. Projector augmented wave calculation of x-ray absorption spectra at the L 2,3 edges. Phys. Rev. B 2013, 87, 205105.10.1103/PhysRevB.87.205105. DOI

Kadek M.; Konecny L.; Gao B.; Repisky M.; Ruud K. X-ray absorption resonances near L2,3-edges from Real-Time Propagation of the Dirac–Kohn–Sham Density Matrix. Phys. Chem. Chem. Phys. 2015, 17, 22566–22570. 10.1039/C5CP03712C. PubMed DOI

Vidal M. L.; Pokhilko P.; Krylov A. I.; Coriani S. Equation-of-motion coupled-cluster theory to model L-edge x-ray absorption and photoelectron spectra. J. Phys. Chem. Lett. 2020, 11, 8314–8321. 10.1021/acs.jpclett.0c02027. PubMed DOI

Halbert L.; Vidal M. L.; Shee A.; Coriani S.; Gomes A. S. P. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac–Coulomb (- Gaunt) Hamiltonian. J. Chem. Theory Comput. 2021, 17, 3583–3598. 10.1021/acs.jctc.0c01203. PubMed DOI

Kasper J. M.; Stetina T. F.; Jenkins A. J.; Li X. Ab initio methods for L-edge x-ray absorption spectroscopy. Chem. Phys. Rev. 2020, 1, 01130410.1063/5.0029725. DOI

Saue T. Relativistic Hamiltonians for chemistry: a primer. ChemPhysChem 2011, 12, 3077–3094. 10.1002/cphc.201100682. PubMed DOI

Sun S.; Stetina T. F.; Zhang T.; Hu H.; Valeev E. F.; Sun Q.; Li X. Efficient Four-Component Dirac–Coulomb–Gaunt Hartree–Fock in the Pauli Spinor Representation. J. Chem. Theory Comput. 2021, 17, 3388.10.1021/acs.jctc.1c00137. PubMed DOI

Norman P.; Dreuw A. Simulating X-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev. 2018, 118, 7208–7248. 10.1021/acs.chemrev.8b00156. PubMed DOI

Bokarev S. I.; Kühn O. Theoretical X-ray spectroscopy of transition metal compounds. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2020, 10, e143310.1002/wcms.1433. DOI

Besley N. A. Modeling of the spectroscopy of core electrons with density functional theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, e1527.10.1002/wcms.1527. DOI

Rankine C. D.; Penfold T. J. Progress in the theory of x-ray spectroscopy: From quantum chemistry to machine learning and ultrafast dynamics. J. Phys. Chem. A 2021, 125, 4276–4293. 10.1021/acs.jpca.0c11267. PubMed DOI

Bagus P. S. Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions. Phys. Rev. 1965, 139, A619.10.1103/PhysRev.139.A619. DOI

Runge E.; Gross E. K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997.10.1103/PhysRevLett.52.997. DOI

Theilhaber J. Ab initio simulations of sodium using time-dependent density-functional theory. Phys. Rev. B 1992, 46, 12990–13003. 10.1103/PhysRevB.46.12990. PubMed DOI

Yabana K.; Bertsch G. Time-dependent local-density approximation in real time. Phys. Rev. B 1996, 54, 4484–4487. 10.1103/PhysRevB.54.4484. PubMed DOI

Casida M. E.Recent Advances In Density Functional Methods: (Part I); World Scientific, 1995; pp 155–192.

Casida M. E. Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct.: THEOCHEM 2009, 914, 3–18. 10.1016/j.theochem.2009.08.018. DOI

Oddershede J.; Jørgensen P.; Yeager D. L. Polarization propagator methods in atomic and molecular calculations. Comput. Phys. Rep. 1984, 2, 33–92. 10.1016/0167-7977(84)90003-0. DOI

Norman P.; Bishop D. M.; Jensen H. J. A.; Oddershede J. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J. Chem. Phys. 2001, 115, 10323–10334. 10.1063/1.1415081. DOI

Norman P.; Bishop D. M.; Jensen H. J. A.; Oddershede J. Nonlinear response theory with relaxation: The first-order hyperpolarizability. J. Chem. Phys. 2005, 123, 194103.10.1063/1.2107627. PubMed DOI

Goings J. J.; Lestrange P. J.; Li X. Real-Time Time-Dependent Electronic Structure Theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1341.10.1002/wcms.1341. DOI

Li X.; Govind N.; Isborn C.; DePrince A. E. III; Lopata K. Real-time time-dependent electronic structure theory. Chem. Rev. 2020, 120, 9951–9993. 10.1021/acs.chemrev.0c00223. PubMed DOI

Repisky M.; Konecny L.; Kadek M.; Komorovsky S.; Malkin O. L.; Malkin V. G.; Ruud K. Excitation Energies from Real-Time Propagation of the Four-Component Dirac–Kohn–Sham Equation. J. Chem. Theory Comput. 2015, 11, 980–991. 10.1021/ct501078d. PubMed DOI

De Santis M.; Storchi L.; Belpassi L.; Quiney H. M.; Tarantelli F. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python. J. Chem. Theory Comput. 2020, 16, 2410–2429. 10.1021/acs.jctc.0c00053. PubMed DOI

Goings J. J.; Kasper J. M.; Egidi F.; Sun S.; Li X. Real time propagation of the exact two component time-dependent density functional theory. J. Chem. Phys. 2016, 145, 104107.10.1063/1.4962422. PubMed DOI

Konecny L.; Kadek M.; Komorovsky S.; Malkina O. L.; Ruud K.; Repisky M. Acceleration of Relativistic Electron Dynamics by Means of X2C Transformation: Application to the Calculation of Nonlinear Optical Properties. J. Chem. Theory Comput. 2016, 12, 5823–5833. 10.1021/acs.jctc.6b00740. PubMed DOI

Lopata K.; Van Kuiken B. E.; Khalil M.; Govind N. Linear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption. J. Chem. Theory Comput. 2012, 8, 3284–3292. 10.1021/ct3005613. PubMed DOI

Kasper J. M.; Lestrange P. J.; Stetina T. F.; Li X. Modeling L2,3-edge X-ray absorption spectroscopy with real-time exact two-component relativistic time-dependent density functional theory. J. Chem. Theory Comput. 2018, 14, 1998–2006. 10.1021/acs.jctc.7b01279. PubMed DOI

Brabec J.; Lin L.; Shao M.; Govind N.; Yang C.; Saad Y.; Ng E. G. Efficient algorithms for estimating the absorption spectrum within linear response TDDFT. J. Chem. Theory Comput. 2015, 11, 5197–5208. 10.1021/acs.jctc.5b00887. PubMed DOI

Furche F.; Krull B. T.; Nguyen B. D.; Kwon J. Accelerating molecular property calculations with nonorthonormal Krylov space methods. J. Chem. Phys. 2016, 144, 174105.10.1063/1.4947245. PubMed DOI

Huang C.; Liu W.; Xiao Y.; Hoffmann M. R. iVI: An iterative vector interaction method for large eigenvalue problems. J. Comput. Chem. 2017, 38, 2481–2499. 10.1002/jcc.24907. PubMed DOI

Kasper J.; Williams-Young D.; Vecharynski E.; Yang C.; Li X. A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems. J. Chem. Theory Comput. 2018, 14, 2034–2041. 10.1021/acs.jctc.8b00141. PubMed DOI

Huang C.; Liu W. iVI-TD-DFT: An iterative vector interaction method for exterior/interior roots of TD-DFT. J. Comput. Chem. 2019, 40, 1023–1037. 10.1002/jcc.25569. PubMed DOI

Komorovsky S.; Cherry P. J.; Repisky M. Four-component relativistic time-dependent density-functional theory using a stable noncollinear DFT ansatz applicable to both closed- and open-shell systems. J. Chem. Phys. 2019, 151, 184111.10.1063/1.5121713. PubMed DOI

Davidson E. R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 1975, 17, 87–94. 10.1016/0021-9991(75)90065-0. DOI

Cederbaum L. S.; Domcke W.; Schirmer J. Many-body theory of core holes. Phys. Rev. A 1980, 22, 206.10.1103/PhysRevA.22.206. DOI

Barth A.; Cederbaum L. S. Many-body theory of core-valence excitations. Phys. Rev. A 1981, 23, 1038.10.1103/PhysRevA.23.1038. DOI

Å gren H.; Carravetta V.; Vahtras O.; Pettersson L. G. Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem. Phys. Lett. 1994, 222, 75–81. 10.1016/0009-2614(94)00318-1. DOI

Å gren H.; Carravetta V.; Vahtras O.; Pettersson L. G. Direct SCF direct static-exchange calculations of electronic spectra. Theor. Chem. Acc. 1997, 97, 14–40. 10.1007/s002140050234. DOI

Ekström U.; Norman P.; Carravetta V. Relativistic four-component static-exchange approximation for core-excitation processes in molecules. Phys. Rev. A 2006, 73, 02250110.1103/PhysRevA.73.022501. DOI

Stener M.; Fronzoni G.; de Simone M. d. Time dependent density functional theory of core electrons excitations. Chem. Phys. Lett. 2003, 373, 115–123. 10.1016/S0009-2614(03)00543-8. DOI

Ray K.; DeBeer George S.; Solomon E. I.; Wieghardt K.; Neese F. Description of the ground-state covalencies of the bis (Dithiolato) transition-metal complexes from X-ray absorption spectroscopy and time-dependent density-functional calculations. Chem. - Eur. J. 2007, 13, 2783–2797. 10.1002/chem.200601425. PubMed DOI

Coriani S.; Koch H. Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. J. Chem. Phys. 2015, 143, 181103.10.1063/1.4935712. PubMed DOI

Herbst M. F.; Fransson T. Quantifying the error of the core–valence separation approximation. J. Chem. Phys. 2020, 153, 05411410.1063/5.0013538. PubMed DOI

Fronzoni G.; Stener M.; Decleva P.; de Simone M.; Coreno M.; Franceschi P.; Furlani C.; Prince K. C. X-ray Absorption Spectroscopy of VOCl3, CrO2Cl2, and MnO3Cl: An Experimental and Theoretical Study. J. Phys. Chem. A 2009, 113, 2914–2925. 10.1021/jp808720z. PubMed DOI

Stetina T. F.; Kasper J. M.; Li X. Modeling L2,3-edge X-ray absorption spectroscopy with linear response exact two-component relativistic time-dependent density functional theory. J. Chem. Phys. 2019, 150, 234103.10.1063/1.5091807. PubMed DOI

Konecny L.; Repisky M.; Ruud K.; Komorovsky S. Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations. J. Chem. Phys. 2019, 151, 194112.10.1063/1.5128564. PubMed DOI

South C.; Shee A.; Mukherjee D.; Wilson A. K.; Saue T. 4-Component relativistic calculations of L3 ionization and excitations for the isoelectronic species UO22+, OUN+ and UN2. Phys. Chem. Chem. Phys. 2016, 18, 21010–21023. 10.1039/C6CP00262E. PubMed DOI

Fransson T.; Burdakova D.; Norman P. K-and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory. Phys. Chem. Chem. Phys. 2016, 18, 13591–13603. 10.1039/C6CP00561F. PubMed DOI

Kehry M.; Franzke Y. J.; Holzer C.; Klopper W. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation. Mol. Phys. 2020, 118, e175506410.1080/00268976.2020.1755064. DOI

Imamura Y.; Nakai H. Analysis of self-interaction correction for describing core excited states. Int. J. Quantum Chem. 2007, 107, 23–29. 10.1002/qua.21025. DOI

Besley N. A.; Noble A. Time-dependent density functional theory study of the X-ray absorption spectroscopy of acetylene, ethylene, and benzene on Si (100). J. Phys. Chem. C 2007, 111, 3333–3340. 10.1021/jp065160x. DOI

Besley N. A.; Peach M. J.; Tozer D. J. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys. 2009, 11, 10350–10358. 10.1039/b912718f. PubMed DOI

Fransson T.; Brumboiu I. E.; Vidal M. L.; Norman P.; Coriani S.; Dreuw A. XABOOM: An X-ray Absorption Benchmark of Organic Molecules Based on Carbon, Nitrogen, and Oxygen 1s → π* Transitions. J. Chem. Theory Comput. 2021, 17, 1618–1637. 10.1021/acs.jctc.0c01082. PubMed DOI PMC

Capano G.; Penfold T.; Besley N.; Milne C.; Reinhard M.; Rittmann-Frank H.; Glatzel P.; Abela R.; Rothlisberger U.; et al. The role of Hartree–Fock exchange in the simulation of x-ray absorption spectra: a study of photoexcited [Fe (bpy) 3] 2+. Chem. Phys. Lett. 2013, 580, 179–184. 10.1016/j.cplett.2013.06.060. DOI

Ekström U.; Norman P. X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach. Phys. Rev. A 2006, 74, 04272210.1103/PhysRevA.74.042722. DOI

Song J.-W.; Watson M. A.; Nakata A.; Hirao K. Core-excitation energy calculations with a long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP). J. Chem. Phys. 2008, 129, 184113.10.1063/1.3010372. PubMed DOI

Nakata A.; Imamura Y.; Otsuka T.; Nakai H. Time-dependent density functional theory calculations for core-excited states: Assessment of standard exchange-correlation functionals and development of a novel hybrid functional. J. Chem. Phys. 2006, 124, 09410510.1063/1.2173987. PubMed DOI

Nakata A.; Imamura Y.; Nakai H. Hybrid exchange-correlation functional for core, valence, and Rydberg excitations: Core-valence-Rydberg B3LYP. J. Chem. Phys. 2006, 125, 06410910.1063/1.2227379. PubMed DOI

Nakata A.; Imamura Y.; Nakai H. Extension of the core-valence-rydberg B3LYP functional to core-excited-state calculations of third-row atoms. J. Chem. Theory Comput. 2007, 3, 1295–1305. 10.1021/ct600368f. PubMed DOI

Bussy A.; Hutter J. First principles correction scheme for linear-response timedependent density functional theory calculations of core electronic states. J. Chem. Phys. 2021, 155, 034108.10.1063/5.0058124. PubMed DOI

Roemelt M.; Neese F. Excited states of large open-shell molecules: an efficient, general, and spin-adapted approach based on a restricted open-shell ground state wave function. J. Phys. Chem. A 2013, 117, 3069–3083. 10.1021/jp3126126. PubMed DOI

Roemelt M.; Maganas D.; DeBeer S.; Neese F. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy. J. Chem. Phys. 2013, 138, 204101.10.1063/1.4804607. PubMed DOI

Olsen J.; Jørgensen P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J. Chem. Phys. 1985, 82, 3235–3264. 10.1063/1.448223. DOI

List N. H.; Kauczor J.; Saue T.; Jensen H. J. A.; Norman P. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation. J. Chem. Phys. 2015, 142, 244111.10.1063/1.4922697. PubMed DOI

List N. H.; Saue T.; Norman P. Rotationally averaged linear absorption spectra beyond the electric-dipole approximation. Mol. Phys. 2017, 115, 63–74. 10.1080/00268976.2016.1187773. DOI

List N. H.; Melin T. R. L.; van Horn M.; Saue T. Beyond the electric-dipole approximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic theory. J. Chem. Phys. 2020, 152, 184110.10.1063/5.0003103. PubMed DOI

Stanton R. E.; Havriliak S. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys. 1984, 81, 1910–1918. 10.1063/1.447865. DOI

Repisky M.; Komorovsky S.; Kadek M.; Konecny L.; Ekström U.; Malkin E.; Kaupp M.; Ruud K.; Malkina O. L.; Malkin V. G. ReSpect: Relativistic spectroscopy DFT program package. J. Chem. Phys. 2020, 152, 184101.10.1063/5.0005094. PubMed DOI

Ullrich C. A.Time-Dependent Density-Functional Theory; Oxford University Press: New York, 2012.

Villaume S.; Saue T.; Norman P. Linear complex polarization propagator in a four-component Kohn-Sham framework. J. Chem. Phys. 2010, 133, 06410510.1063/1.3461163. PubMed DOI

Vícha J.; Patzschke M.; Marek R. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes. Phys. Chem. Chem. Phys. 2013, 15, 7740.10.1039/c3cp44440f. PubMed DOI

Vícha J.; Novotný J.; Straka M.; Repisky M.; Ruud K.; Komorovsky S.; Marek R. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches. Phys. Chem. Chem. Phys. 2015, 17, 24944–24955. 10.1039/C5CP04214C. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396–1396. 10.1103/PhysRevLett.78.1396. PubMed DOI

Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI

Slater J. C. A simplification of the Hartree-Fock method. Phys. Rev. 1951, 81, 385–390. 10.1103/PhysRev.81.385. DOI

Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.10.1039/b508541a. PubMed DOI

Andrae D.; Häußermann U.; Dolg M.; Stoll H.; Preuß H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 1990, 77, 123–141. 10.1007/BF01114537. DOI

Balasubramani S. G.; et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107.10.1063/5.0004635. PubMed DOI PMC

Dyall K.; Gomes A. S. P. unpublished, cVDZ basis sets for 3d elements, personal communication, to appear at http://dirac.chem.sdu.dk/basisarchives/dyall/.

Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd. Theor. Chem. Acc. 2007, 117, 483–489. 10.1007/s00214-006-0174-5. PubMed DOI

Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg. Theor. Chem. Acc. 2004, 112, 403–409. 10.1007/s00214-004-0607-y. PubMed DOI

Dyall K. G.; Gomes A. S. P. Revised relativistic basis sets for the 5d elements Hf–Hg. Theor. Chem. Acc. 2010, 125, 97.10.1007/s00214-009-0717-7. DOI

Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr. Theor. Chem. Acc. 2007, 117, 491–500. 10.1007/s00214-006-0175-4. PubMed DOI

Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI

Kendall R. A.; Dunning T. H. Jr; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI

Woon D. E.; Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. 10.1063/1.464303. DOI

Vosko S. H.; Wilk L.; Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58, 1200–1211. 10.1139/p80-159. DOI

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. 10.1021/j100096a001. DOI

Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI

Visscher L.; Dyall K. G. Dirac–Fock atomic electronic structure calculations using different nuclear charge distributions. At. Data Nucl. Data Tables 1997, 67, 207–224. 10.1006/adnd.1997.0751. DOI

Tougerti A.; Cristol S.; Berrier E.; Briois V.; La Fontaine C.; Villain F.; Joly Y. XANES study of rhenium oxide compounds at the L1 and L3 absorption edges. Phys. Rev. B 2012, 85, 125136.10.1103/PhysRevB.85.125136. DOI

Boysen R. B.; Szilagyi R. K. Development of palladium L-edge X-ray absorption spectroscopy and its application for chloropalladium complexes. Inorg. Chim. Acta 2008, 361, 1047–1058. 10.1016/j.ica.2007.07.032. DOI

Leapman R.; Grunes L. Anomalous L3/L2 White-Line Ratios in the 3d Transition Metals. Phys. Rev. Lett. 1980, 45, 397.10.1103/PhysRevLett.45.397. DOI

Thole B.; Van der Laan G. Branching ratio in x-ray absorption spectroscopy. Phys. Rev. B 1988, 38, 3158.10.1103/PhysRevB.38.3158. PubMed DOI

Levy M. Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. Phys. Rev. A 1991, 43, 4637.10.1103/PhysRevA.43.4637. PubMed DOI

Levy M.; Perdew J. P. Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys. Rev. A 1985, 32, 2010.10.1103/PhysRevA.32.2010. PubMed DOI

Levy M. Asymptotic coordinate scaling bound for exchange-correlation energy in density-functional theory. Int. J. Quantum Chem. 1989, 36, 617–619. 10.1002/qua.560360864. DOI

Maier T. M.; Arbuznikov A. V.; Kaupp M. Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 9, e137810.1002/wcms.1378. DOI

Maier T. M.; Ikabata Y.; Nakai H. Relativistic local hybrid functionals and their impact on 1s core orbital energies. J. Chem. Phys. 2020, 152, 214103.10.1063/5.0010400. PubMed DOI

George S. J.; Drury O. B.; Fu J.; Friedrich S.; Doonan C. J.; George G. N.; White J. M.; Young C. G.; Cramer S. P. Molybdenum X-ray absorption edges from 200 to 20,000 eV: The benefits of soft X-ray spectroscopy for chemical speciation. J. Inorg. Biochem. 2009, 103, 157–167. 10.1016/j.jinorgbio.2008.09.008. PubMed DOI PMC

Jayarathne U.; Chandrasekaran P.; Greene A. F.; Mague J. T.; DeBeer S.; Lancaster K. M.; Sproules S.; Donahue J. P. X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge. Inorg. Chem. 2014, 53, 8230–8241. 10.1021/ic500256a. PubMed DOI PMC

Butorin S. M.; Modin A.; Vegelius J. R.; Kvashnina K. O.; Shuh D. K. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy. J. Phys. Chem. C 2016, 120, 29397–29404. 10.1021/acs.jpcc.6b09335. DOI

Pawlak T.; Niedzielska D.; Vícha J.; Marek R.; Pazderski L. Dimeric Pd (II) and Pt (II) chloride organometallics with 2-phenylpyridine and their solvolysis in dimethylsulfoxide. J. Organomet. Chem. 2014, 759, 58–66. 10.1016/j.jorganchem.2014.02.016. DOI

Harris T. V.; Szilagyi R. K.; Holman K. L. M. Electronic structural investigations of ruthenium compounds and anticancer prodrugs. JBIC, J. Biol. Inorg. Chem. 2009, 14, 891–898. 10.1007/s00775-009-0501-0. PubMed DOI

Altmann S. L.; Herzig P.. Point-Group Theory Tables; Oxford, 1994; Vol. 583.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...