Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao

. 2021 May 12 ; 10 (5) : . [epub] 20210512

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34066241

The spatial location and timing of plant developmental events are largely regulated by the well balanced effects of auxin and cytokinin phytohormone interplay. Together with transport, localized metabolism regulates the concentration gradients of their bioactive forms, ultimately eliciting growth responses. In order to explore the dynamics of auxin and cytokinin metabolism during early seedling growth in Theobroma cacao (cacao), we have performed auxin and cytokinin metabolite profiling in hypocotyls and root developmental sections at different times by using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry (UHPLC-MS/MS). Our work provides quantitative characterization of auxin and cytokinin metabolites throughout early root and hypocotyl development and identifies common and distinctive features of auxin and cytokinin metabolism during cacao seedling development.

Zobrazit více v PubMed

Abbott P., Wilcox M., Muir W.A. Selected Paper prepared for presentation at the 15th Annual World Food and Agribusiness Forum, Symposium and Case Conference, Chicago, IL, USA, 25–28 June 2005. Purdue University; West Lafayette, IN, USA: 2005. Corporate Social Responsibility in International Cocoa Trade.

Niemenak N., Cilas C., Rohsius C., Bleiholder H., Meier U., Lieberei R. Phenological Growth Stages of Cacao Plants (Theobroma Sp.): Codification and Description According to the BBCH Scale. Ann. Appl. Biol. 2010;156:13–24. doi: 10.1111/j.1744-7348.2009.00356.x. DOI

Scheres B., Benfey P., Dolan L. Root Development. In: Somerville C.R., Meyerowitz E.M., editors. The Arabidopsis Book. Volume 1. American Society of Plant Biologists; Rockville, MD, USA: 2002. PubMed DOI PMC

Ivanov V.B., Dubrovsky J.G. Longitudinal Zonation Pattern in Plant Roots: Conflicts and Solutions. Trends Plant Sci. 2013;18:237–243. doi: 10.1016/j.tplants.2012.10.002. PubMed DOI

Pacheco-Escobedo M.A., Ivanov V.B., Ransom-Rodríguez I., Arriaga-Mejía G., Ávila H., Baklanov I.A., Pimentel A., Corkidi G., Doerner P., Dubrovsky J.G., et al. Longitudinal Zonation Pattern in Arabidopsis Root Tip Defined by a Multiple Structural Change Algorithm. Ann. Bot. 2016;118:763–776. doi: 10.1093/aob/mcw101. PubMed DOI PMC

Banda J., Bellande K., von Wangenheim D., Goh T., Guyomarc’h S., Laplaze L., Bennett M.J. Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit. Trends Plant Sci. 2019;24:826–839. doi: 10.1016/j.tplants.2019.06.015. PubMed DOI

Dubrovsky J.G., Napsucialy-Mendivil S., Duclercq J., Cheng Y., Shishkova S., Ivanchenko M.G., Friml J., Murphy A.S., Benková E. Auxin Minimum Defines a Developmental Window for Lateral Root Initiation. New Phytol. 2011;191:970–983. doi: 10.1111/j.1469-8137.2011.03757.x. PubMed DOI

Xuan W., Band L.R., Kumpf R.P., Van Damme D., Parizot B., De Rop G., Opdenacker D., Möller B.K., Skorzinski N., Njo M.F., et al. Cyclic Programmed Cell Death Stimulates Hormone Signaling and Root Development in Arabidopsis. Science. 2016;351:384. doi: 10.1126/science.aad2776. PubMed DOI

Xuan W., Audenaert D., Parizot B., Möller B.K., Njo M.F., De Rybel B., De Rop G., Van Isterdael G., Mähönen A.P., Vanneste S., et al. Root Cap-Derived Auxin Pre-Patterns the Longitudinal Axis of the Arabidopsis Root. Curr. Biol. 2015;25:1381–1388. doi: 10.1016/j.cub.2015.03.046. PubMed DOI

Casimiro I., Beeckman T., Graham N., Bhalerao R., Zhang H., Casero P., Sandberg G., Bennett M.J. Dissecting Arabidopsis Lateral Root Development. Trends Plant Sci. 2003;8:165–171. doi: 10.1016/S1360-1385(03)00051-7. PubMed DOI

Chang L., Ramireddy E., Schmülling T. Lateral Root Formation and Growth of Arabidopsis Is Redundantly Regulated by Cytokinin Metabolism and Signalling Genes. J. Exp. Bot. 2013;64:5021–5032. doi: 10.1093/jxb/ert291. PubMed DOI PMC

Dastidar R., Hooda J., Shah A., Cao T.M., Henke R., Zhang L. The Nuclear Localization of SWI/SNF Proteins Is Subjected to Oxygen Regulation. Cell Biosci. 2012;2:30. doi: 10.1186/2045-3701-2-30. PubMed DOI PMC

Di Mambro R., Svolacchia N., Dello Ioio R., Pierdonati E., Salvi E., Pedrazzini E., Vitale A., Perilli S., Sozzani R., Benfey P.N., et al. The Lateral Root Cap Acts as an Auxin Sink That Controls Meristem Size. Curr. Biol. 2019;29:1199–1205.e4. doi: 10.1016/j.cub.2019.02.022. PubMed DOI

Laskowski M., ten Tusscher K.H. Periodic Lateral Root Priming: What Makes It Tick? Plant Cell. 2017;29:432. doi: 10.1105/tpc.16.00638. PubMed DOI PMC

Bielach A., Podlesáková K., Marhavy P., Duclercq J., Cuesta C., Müller B., Grunewald W., Tarkowski P., Benková E. Spatiotemporal Regulation of Lateral Root Organogenesis in Arabidopsis by Cytokinin. Plant Cell. 2012;24:3967–3981. doi: 10.1105/tpc.112.103044. PubMed DOI PMC

Laplaze L., Benkova E., Casimiro I., Maes L., Vanneste S., Swarup R., Weijers D., Calvo V., Parizot B., Herrera-Rodriguez M.B., et al. Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell. 2007;19:3889. doi: 10.1105/tpc.107.055863. PubMed DOI PMC

Li X., Mo X., Shou H., Wu P. Cytokinin-Mediated Cell Cycling Arrest of Pericycle Founder Cells in Lateral Root Initiation of Arabidopsis. Plant Cell Physiol. 2006;47:1112–1123. doi: 10.1093/pcp/pcj082. PubMed DOI

Jensen P.J., Hangarter R.P., Estelle M. Auxin Transport Is Required for Hypocotyl Elongation in Light-Grown but Not Dark-Grown Arabidopsis. Plant Physiol. 1998;116:455. doi: 10.1104/pp.116.2.455. PubMed DOI PMC

Tao Y., Ferrer J.-L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., et al. Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell. 2008;133:164–176. doi: 10.1016/j.cell.2008.01.049. PubMed DOI PMC

Zheng Z., Guo Y., Novák O., Chen W., Ljung K., Noel J.P., Chory J. Local Auxin Metabolism Regulates Environment-Induced Hypocotyl Elongation. Nat. Plants. 2016;2:16025. doi: 10.1038/nplants.2016.25. PubMed DOI PMC

Fendrych M., Leung J., Friml J. TIR1/AFB-Aux/IAA Auxin Perception Mediates Rapid Cell Wall Acidification and Growth of Arabidopsis Hypocotyls. eLife. 2016;5:e19048. doi: 10.7554/eLife.19048. PubMed DOI PMC

Smets R., Le J., Prinsen E., Verbelen J.-P., Van Onckelen H.A. Cytokinin-Induced Hypocotyl Elongation in Light-Grown Arabidopsis Plants with Inhibited Ethylene Action or Indole-3-Acetic Acid Transport. Planta. 2005;221:39–47. doi: 10.1007/s00425-004-1421-4. PubMed DOI

Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin Action in Response to Abiotic and Biotic Stresses in Plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI

Zhao Y. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC

Korasick D.A., Enders T.A., Strader L.C. Auxin Biosynthesis and Storage Forms. J. Exp. Bot. 2013;64:2541–2555. doi: 10.1093/jxb/ert080. PubMed DOI PMC

Kubeš M., Yang H., Richter G.L., Cheng Y., Młodzińska E., Wang X., Blakeslee J.J., Carraro N., Petrášek J., Zažímalová E., et al. The Arabidopsis Concentration-Dependent Influx/Efflux Transporter ABCB4 Regulates Cellular Auxin Levels in the Root Epidermis. Plant J. 2012;69:640–654. doi: 10.1111/j.1365-313X.2011.04818.x. PubMed DOI

Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021;13:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC

Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC

Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-Encoding AtDAO1 Gene Controls IAA Oxidation and Homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016. doi: 10.1073/pnas.1604375113. PubMed DOI PMC

Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant Membrane Assays with Cytokinin Receptors Underpin the Unique Role of Free Cytokinin Bases as Biologically Active Ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Sakakibara H. CYTOKININS: Activity, Biosynthesis, and Translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Dwivedi-Burks S. Cytokinin Metabolism. In: Khan N.A., Nazar R., Iqbal N., Anjum N.A., editors. Phytohormones and Abiotic Stress Tolerance in Plants. Springer; Berlin/Heidelberg, Germany: 2012. pp. 157–168.

Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., Kyozuka J. Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI

Spíchal L. Cytokinins– Recent News and Views of Evolutionally Old Molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI

Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct Metabolism of N-Glucosides of Isopentenyladenine and Trans-Zeatin Determines Cytokinin Metabolic Spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI

Hoyerová K., Hošek P. New Insights Into the Metabolism and Role of Cytokinin N-Glucosides in Plants. Front. Plant Sci. 2020;11:741. doi: 10.3389/fpls.2020.00741. PubMed DOI PMC

Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., Novák O. Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. Plant Cell. 2015;27:1955. doi: 10.1105/tpc.15.00176. PubMed DOI PMC

Ko D., Kang J., Kiba T., Park J., Kojima M., Do J., Kim K.Y., Kwon M., Endler A., Song W.-Y., et al. Arabidopsis ABCG14 Is Essential for the Root-to-Shoot Translocation of Cytokinin. Proc. Natl. Acad. Sci. USA. 2014;111:7150. doi: 10.1073/pnas.1321519111. PubMed DOI PMC

Liu W., Li R.-J., Han T.-T., Cai W., Fu Z.-W., Lu Y.-T. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant Physiol. 2015;168:343. doi: 10.1104/pp.15.00030. PubMed DOI PMC

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-Specific Profiling of the Arabidopsis Thaliana Auxin Metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI

Petersson S.V., Johansson A.I., Kowalczyk M., Makoveychuk A., Wang J.Y., Moritz T., Grebe M., Benfey P.N., Sandberg G., Ljung K. An Auxin Gradient and Maximum in the Arabidopsis Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell. 2009;21:1659. doi: 10.1105/tpc.109.066480. PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Cai W.-J., Ye T.-T., Wang Q., Cai B.-D., Feng Y.-Q. A Rapid Approach to Investigate Spatiotemporal Distribution of Phytohormones in Rice. Plant Methods. 2016;12:47. doi: 10.1186/s13007-016-0147-1. PubMed DOI PMC

Pineda Rodó A., Brugière N., Vankova R., Malbeck J., Olson J.M., Haines S.C., Martin R.C., Habben J.E., Mok D.W.S., Mok M.C. Over-Expression of a Zeatin O-Glucosylation Gene in Maize Leads to Growth Retardation and Tasselseed Formation. J. Exp. Bot. 2008;59:2673–2686. doi: 10.1093/jxb/ern137. PubMed DOI PMC

De Zio E., Trupiano D., Karady M., Antoniadi I., Montagnoli A., Terzaghi M., Chiatante D., Ljung K., Scippa G.S. Tissue-Specific Hormone Profiles from Woody Poplar Roots under Bending Stress. Physiol. Plant. 2019;165:101–113. doi: 10.1111/ppl.12830. PubMed DOI

Edlund E., Novak O., Karady M., Ljung K., Jansson S. Contrasting Patterns of Cytokinins between Years in Senescing Aspen Leaves. Plant Cell Environ. 2017;40:622–634. doi: 10.1111/pce.12899. PubMed DOI

Záveská Drábková L., Dobrev P.I., Motyka V. Phytohormone Profiling across the Bryophytes. PLoS ONE. 2015;10:e0125411. doi: 10.1371/journal.pone.0125411. PubMed DOI PMC

Žižková E., Kubeš M., Dobrev P.I., Přibyl P., Šimura J., Zahajská L., Záveská Drábková L., Novák O., Motyka V. Control of Cytokinin and Auxin Homeostasis in Cyanobacteria and Algae. Ann. Bot. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC

Mähönen A.P., ten Tusscher K., Siligato R., Smetana O., Díaz-Triviño S., Salojärvi J., Wachsman G., Prasad K., Heidstra R., Scheres B. PLETHORA Gradient Formation Mechanism Separates Auxin Responses. Nature. 2014;515:125–129. doi: 10.1038/nature13663. PubMed DOI PMC

Tanaka H., Dhonukshe P., Brewer P.B., Friml J. Spatiotemporal Asymmetric Auxin Distribution: A Means to Coordinate Plant Development. Cell. Mol. Life Sci. CMLS. 2006;63:2738–2754. doi: 10.1007/s00018-006-6116-5. PubMed DOI PMC

Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI

Grieneisen V.A., Xu J., Marée A.F.M., Hogeweg P., Scheres B. Auxin Transport Is Sufficient to Generate a Maximum and Gradient Guiding Root Growth. Nature. 2007;449:1008–1013. doi: 10.1038/nature06215. PubMed DOI

Mironova V.V., Omelyanchuk N.A., Yosiphon G., Fadeev S.I., Kolchanov N.A., Mjolsness E., Likhoshvai V.A. A Plausible Mechanism for Auxin Patterning along the Developing Root. BMC Syst. Biol. 2010;4:98. doi: 10.1186/1752-0509-4-98. PubMed DOI PMC

SMITH R.S., BAYER E.M. Auxin Transport-Feedback Models of Patterning in Plants. Plant Cell Environ. 2009;32:1258–1271. doi: 10.1111/j.1365-3040.2009.01997.x. PubMed DOI

van Berkel K., de Boer R.J., Scheres B., ten Tusscher K. Polar Auxin Transport: Models and Mechanisms. Development. 2013;140:2253. doi: 10.1242/dev.079111. PubMed DOI

Brumos J., Robles L.M., Yun J., Vu T.C., Jackson S., Alonso J.M., Stepanova A.N. Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Dev. Cell. 2018;47:306–318.e5. doi: 10.1016/j.devcel.2018.09.022. PubMed DOI

Di Mambro R., De Ruvo M., Pacifici E., Salvi E., Sozzani R., Benfey P.N., Busch W., Novak O., Ljung K., Di Paola L., et al. Auxin Minimum Triggers the Developmental Switch from Cell Division to Cell Differentiation in the Arabidopsis Root. Proc. Natl. Acad. Sci. USA. 2017:201705833. doi: 10.1073/pnas.1705833114. PubMed DOI PMC

Sabatini S., Beis D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J., Benfey P., Leyser O., Bechtold N., Weisbeek P., et al. An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root. Cell. 1999;99:463–472. doi: 10.1016/S0092-8674(00)81535-4. PubMed DOI

Kramer E.M., Ackelsberg E.M. Auxin Metabolism Rates and Implications for Plant Development. Front. Plant Sci. 2015;6:150. doi: 10.3389/fpls.2015.00150. PubMed DOI PMC

Bhalerao R.P., Eklöf J., Ljung K., Marchant A., Bennett M., Sandberg G. Shoot-Derived Auxin Is Essential for Early Lateral Root Emergence in Arabidopsis Seedlings. Plant, J. 2002;29:325–332. doi: 10.1046/j.0960-7412.2001.01217.x. PubMed DOI

Casimiro I., Marchant A., Bhalerao R.P., Beeckman T., Dhooge S., Swarup R., Graham N., Inzé D., Sandberg G., Casero P.J., et al. Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell. 2001;13:843. doi: 10.1105/tpc.13.4.843. PubMed DOI PMC

Peer W.A., Cheng Y., Murphy A.S. Evidence of Oxidative Attenuation of Auxin Signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI

Kowalczyk M., Sandberg G. Quantitative Analysis of Indole-3-Acetic Acid Metabolites in Arabidopsis. Plant Physiol. 2001;127:1845. doi: 10.1104/pp.010525. PubMed DOI PMC

Brunoni F., Collani S., Casanova-Sáez R., Šimura J., Karady M., Schmid M., Ljung K., Bellini C. Conifers Exhibit a Characteristic Inactivation of Auxin to Maintain Tissue Homeostasis. New Phytol. 2020;226:1753–1765. doi: 10.1111/nph.16463. PubMed DOI

Kaneko S., Cook S.D., Aoi Y., Watanabe A., Hayashi K.-I., Kasahara H. An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella Moellendorffii. Plant Cell Physiol. 2020;61:1724–1732. doi: 10.1093/pcp/pcaa098. PubMed DOI

Kawai Y., Ono E., Mizutani M. Evolution and Diversity of the 2–Oxoglutarate-Dependent Dioxygenase Superfamily in Plants. Plant J. 2014;78:328–343. doi: 10.1111/tpj.12479. PubMed DOI

Takehara S., Sakuraba S., Mikami B., Yoshida H., Yoshimura H., Itoh A., Endo M., Watanabe N., Nagae T., Matsuoka M., et al. A Common Allosteric Mechanism Regulates Homeostatic Inactivation of Auxin and Gibberellin. Nat. Commun. 2020;11:2143. doi: 10.1038/s41467-020-16068-0. PubMed DOI PMC

Zürcher E., Müller B. Cytokinin Synthesis, Signaling, and Function—Advances and New Insights. Int. Rev. Cell Mol. Biol. 2016;324:1–38. PubMed

Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The Role of Cis-Zeatin-Type Cytokinins in Plant Growth Regulation and Mediating Responses to Environmental Interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC

Plačková L., Oklestkova J., Pospíšková K., Poláková K., Buček J., Stýskala J., Zatloukal M., Šafařík I., Zbořil R., Strnad M., et al. Microscale Magnetic Microparticle-Based Immunopurification of Cytokinins from Arabidopsis Root Apex. Plant J. 2017;89:1065–1075. doi: 10.1111/tpj.13443. PubMed DOI

Köllmer I., Novák O., Strnad M., Schmülling T., Werner T. Overexpression of the Cytosolic Cytokinin Oxidase/Dehydrogenase (CKX7) from Arabidopsis Causes Specific Changes in Root Growth and Xylem Differentiation. Plant J. 2014;78:359–371. doi: 10.1111/tpj.12477. PubMed DOI

Xiao Y., Liu D., Zhang G., Gao S., Liu L., Xu F., Che R., Wang Y., Tong H., Chu C. Big Grain3, Encoding a Purine Permease, Regulates Grain Size via Modulating Cytokinin Transport in Rice. J. Integr. Plant Biol. 2019;61:581–597. doi: 10.1111/jipb.12727. PubMed DOI

Reid D.E., Heckmann A.B., Novák O., Kelly S., Stougaard J. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus Japonicus. Plant Physiol. 2016;170:1060. doi: 10.1104/pp.15.00650. PubMed DOI PMC

Kuderová A., Urbánková I., Válková M., Malbeck J., Brzobohatý B., Némethová D., Hejátko J. Effects of Conditional IPT-Dependent Cytokinin Overproduction on Root Architecture of Arabidopsis Seedlings. Plant Cell Physiol. 2008;49:570–582. doi: 10.1093/pcp/pcn029. PubMed DOI

Antoniadi I., Novák O., Gelová Z., Johnson A., Plíhal O., Simerský R., Mik V., Vain T., Mateo-Bonmatí E., Karady M., et al. Cell-Surface Receptors Enable Perception of Extracellular Cytokinins. Nat. Commun. 2020;11:4284. doi: 10.1038/s41467-020-17700-9. PubMed DOI PMC

Bairu M.W., Novák O., Doležal K., Van Staden J. Changes in Endogenous Cytokinin Profiles in Micropropagated Harpagophytum Procumbens in Relation to Shoot-Tip Necrosis and Cytokinin Treatments. Plant Growth Regul. 2011;63:105–114. doi: 10.1007/s10725-010-9558-6. DOI

Schmülling T., Werner T., Riefler M., Krupková E., Bartrina y Manns I. Structure and Function of Cytokinin Oxidase/Dehydrogenase Genes of Maize, Rice, Arabidopsis and Other Species. J. Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI

Šimášková M., O’Brien J.A., Khan M., Van Noorden G., Ötvös K., Vieten A., De Clercq I., Van Haperen J.M.A., Cuesta C., Hoyerová K., et al. Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters. Nat. Commun. 2015;6:8717. doi: 10.1038/ncomms9717. PubMed DOI

Dello Ioio R., Nakamura K., Moubayidin L., Perilli S., Taniguchi M., Morita M.T., Aoyama T., Costantino P., Sabatini S. A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science. 2008;322:1380. doi: 10.1126/science.1164147. PubMed DOI

Benková E., Bielach A. Lateral Root Organogenesis—from Cell to Organ. Curr. Opin. Plant Biol. 2010;13:677–683. doi: 10.1016/j.pbi.2010.09.006. PubMed DOI

Marhavý P., Duclercq J., Weller B., Feraru E., Bielach A., Offringa R., Friml J., Schwechheimer C., Murphy A., Benková E. Cytokinin Controls Polarity of PIN1-Dependent Auxin Transport during Lateral Root Organogenesis. Curr. Biol. 2014;24:1031–1037. doi: 10.1016/j.cub.2014.04.002. PubMed DOI

International Cocoa Germplasm Database CRA Ltd./ICE Futures Europe/University of Reading, Berkshire, UK. [(accessed on 2 January 2020)]; Available online: http://www.icgd.reading.ac.uk.

Driver J.A., Kuniyuki A.H. In Vitro Propagation of Paradox Walnut Rootstock. HortScience. 1984;19:507–509.

Ivanov Dobrev P., Kamínek M. Fast and Efficient Separation of Cytokinins from Auxin and Abscisic Acid and Their Purification Using Mixed-Mode Solid-Phase Extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phytohormone profiling in an evolutionary framework

. 2024 May 08 ; 15 (1) : 3875. [epub] 20240508

Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants

. 2023 Oct 12 ; 14 (10) : . [epub] 20231012

Plant Growth Regulators in Tree Rooting

. 2022 Mar 17 ; 11 (6) : . [epub] 20220317

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace