• This record comes from PubMed

Cation-π Interactions in Biomolecular Contexts by Neutron Scattering and Molecular Dynamics: A Case Study of the Tetramethylammonium Cation

. 2025 Jul 10 ; 129 (27) : 6911-6918. [epub] 20250627

Language English Country United States Media print-electronic

Document type Journal Article

Cation-π interactions involving the tetramethylammonium motif are prevalent in biological systems, playing crucial roles in membrane protein function, DNA expression regulation, and protein folding. However, accurately modeling cation-π interactions where electronic polarization plays a critical role is computationally challenging, especially in large biomolecular systems. This study implements a physically justified electronic continuum correction (ECC) to the CHARMM36 force field, scaling ionic charges by a factor of 0.75 to effectively account for electronic polarization without additional computational overhead. This approach, while not specifically designed for cation-π interactions, is shown here to significantly improve predictions of the structure of an aqueous tetramethylammonium-pyridine complex as compared to neutron diffraction data. This result, together with computational predictions for the structure of the aqueous tetramethylammonium-phenol complex, underscores the potential of ECC as a versatile method to improve the description of cation-π interactions in biomolecular simulations.

See more in PubMed

Ooi S. K. T., Qiu C., Bernstein E., Li K., Jia D., Yang Z., Erdjument-Bromage H., Tempst P., Lin S.-P., Allis C. D.. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novomethylation of DNA. Nature. 2007;448:714–717. doi: 10.1038/nature05987. PubMed DOI PMC

Gao J., Chou L. W., Auerbach A.. The Nature of Cation-Pi Binding: Interactions between Tetramethylammonium Ion and Benzene in Aqueous Solution. Biophys. J. 1993;65:43–47. doi: 10.1016/S0006-3495(93)81031-2. PubMed DOI PMC

Cheng J., Goldstein R., Gershenson A., Stec B., Roberts M. F.. The Cation- Box Is a Specific Phosphatidylcholine Membrane Targeting Motif *. J. Biol. Chem. 2013;288:14863–14873. doi: 10.1074/jbc.M113.466532. PubMed DOI PMC

Bellamy H. D., Lim L. W., Mathews F. S., Dunham W. R.. Studies ofCrystalline Trimethylamine Dehydrogenase in Three Oxidation States and in the Presence of Substrate and Inhibitor. J. Biol. Chem. 1989;264:11887–11892. doi: 10.1016/S0021-9258(18)80149-1. PubMed DOI

Dougherty D. A.. Cation-Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp. Science. 1996;271:163–168. doi: 10.1126/science.271.5246.163. PubMed DOI

Tsuzuki S., Yoshida M., Uchimaru T., Mikami M.. The Origin of the Cation/ Interaction: The Significant Importance of the Induction in Li+ and Na+ Complexes. J. Phys. Chem. A. 2001;105:769–773. doi: 10.1021/jp003287v. DOI

Khan H. M., MacKerell A. D. J., Reuter N.. Cation- Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2019;15:7–12. doi: 10.1021/acs.jctc.8b00839. PubMed DOI PMC

Turupcu A., Tirado-Rives J., Jorgensen W. L.. Explicit Representation of Cation- Interactions in Force Fields with 1/R4 Nonbonded Terms. J. Chem. Theory Comput. 2020;16:7184–7194. doi: 10.1021/acs.jctc.0c00847. PubMed DOI PMC

Lin F.-Y., MacKerell D., MacKerell J.. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins. J. Comput. Chem. 2020;41:439–448. doi: 10.1002/jcc.26067. PubMed DOI PMC

Felder C., Jiang H.-L., Zhu W.-L., Chen K.-X., Silman I., Botti S. A., Sussman J. L.. Quantum/Classical Mechanical Comparison of Cation-Interactions between Tetramethylammonium and Benzene. J.Phys. Chem. A. 2001;105:1326–1333. doi: 10.1021/jp002933n. DOI

Teng X., Yu W., MacKerell A. D.. Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field. J. Phys. Chem. Lett. 2025;16:1016–1023. doi: 10.1021/acs.jpclett.4c03451. PubMed DOI PMC

Leontyev I. V., Stuchebrukhov A. A.. Electronic Continuum Model for Molecular Dynamics Simulations of Biological Molecules. J.Chem. Theory Comput. 2010;6:1498–1508. doi: 10.1021/ct9005807. PubMed DOI PMC

Nencini R., Tempra C., Biriukov D., Riopedre-Fernandez M., Cruces Chamorro V., Polak J., Mason P. E., Ondo D., Heyda J., Ollila O. H. S.. et al. Effective Inclusion of Electronic PolarizationImproves the Description of Electrostatic Interactions: TheprosECCo75 Biomolecular Force Field. J. Chem. Theory Comput. 2024;20:7546–7559. doi: 10.1021/acs.jctc.4c00743. PubMed DOI PMC

MacKerell A. D. J., Bashford D., Bellott M., Dunbrack R. L. J., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S.. et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI

Jorge M., Barrera M. C., Milne A. W., Ringrose C., Cole D. J.. What Is the Optimal Dipole Moment for Nonpolarizable Models of Liquids? J. Chem. Theory Comput. 2023;19:1790–1804. doi: 10.1021/acs.jctc.2c01123. PubMed DOI PMC

Jorge M.. Theoretically Grounded Approaches to Account for Polarization Effects in Fixed-Charge Force Fields. J. Chem. Phys. 2024;161(18):180901. doi: 10.1063/5.0236899. PubMed DOI

McFegan L., Juhasz A., Marton P., Hórvölgyi Z., Jedlovszky-Hajdu A., Hantal G., Jedlovszky P.. Surface Affinity of Tetramethylammonium Iodide inAqueous Solutions: A Combined Experimental and Computer Simulation Study. J. Phys. Chem. B. 2023;127:5341–5352. doi: 10.1021/acs.jpcb.3c01370. PubMed DOI PMC

de Jong P. H. K., Neilson G. W.. Structural Studies of Ionic Solutions underCritical Conditions. J. Phys.: Condens. Matter. 1996;8:9275. doi: 10.1088/0953-8984/8/47/015. DOI

Mason P. E., Neilson G. W., Dempsey C. E., Brady J. W.. NeutronDiffraction and Simulation Studies of CsNO3 and Cs2CO3 Solutions. J. Am. Chem. Soc. 2006;128:15136–15144. doi: 10.1021/ja0613207. PubMed DOI

Mason P. E., Ansell S., Neilson G. W.. Neutron Diffraction Studies of Electrolytes in Null Water: A Direct Determination of the First HydrationZone of Ions. J. Phys.: condens. Matter. 2006;18:8437. doi: 10.1088/0953-8984/18/37/004. PubMed DOI

Neilson G. W., Mason P. E., Ramos S., Sullivan D.. Neutronand X-Ray Scattering Studies of Hydration in Aqueous Solutions. Philos. Trans. R. Soc. London, A. 2001;359:1575–1591. doi: 10.1098/rsta.2001.0866. DOI

Turner J. A. S., Soper A. K., Finney J. L.. A neutron-diffraction study of tetramethylammonium chloride in aqueous solution. Mol. Phys. 1990;70:679–700. doi: 10.1080/00268979000102661. DOI

Mason P. E., Neilson G. W., Dempsey C. E., Price D. L., Saboungi M.-L., Brady J. W.. Observation of Pyridine Aggregation in Aqueous SolutionUsing Neutron Scattering Experiments and MD Simulations. J. Phys. Chem. B. 2010;114:5412–5419. doi: 10.1021/jp9097827. PubMed DOI PMC

Turner J., Soper A., Finney J.. Water Structure in Aqueous Solutions ofTetramethylammonium Chloride. Mol. Phys. 1992;77:411–429. doi: 10.1080/00268979200102521. DOI

Turner J. Z., Soper A. K., Finney J. L.. Ionic versus Apolar Behavior of theTetramethylammonium Ion in Water. J. Chem. Phys. 1995;102:5438–5443. doi: 10.1063/1.469271. DOI

Nilsson E. J., Alfredsson V., Bowron D. T., Edler K. J.. A Neutron Scattering and Modelling Study of Aqueous Solutions of Tetramethylammoniumand Tetrapropylammonium Bromide. Phys. Chem. Chem. Phys. 2016;18:11193–11201. doi: 10.1039/C6CP01389A. PubMed DOI

Fischer H., Cuello G., Palleau P., Feltin D., Barnes A., Badyal Y., Simonson J.. D4c: A Very High Precision Diffractometer for Disordered Materials. Appl. Phys. A: Mater. Sci. Process. 2002;74:s160–s162. doi: 10.1007/s003390101087. DOI

Mason P. E., Ansell H. E., Neilson G. W., Rempe S.. Towards a Fuller Understanding of Protein–Lipid Interactions. J. Phys. Chem. B. 2015;119(5):2003–2009. PubMed

Herdman G. J., Neilson G. W.. Ferric Ion (Fe­(III)) Coordination inConcentrated Aqueous Electrolyte Solutions. J. Phys.: condens. Matter. 1992;4:627. doi: 10.1088/0953-8984/4/3/004. DOI

Enderby J. E., Richards R. E., Williams R. J. P.. Neutron and X-ray Scattering from Aqueous Solutions. Proc. R. Soc. London A. 1997;345:107–17. doi: 10.1098/rspa.1975.0128. DOI

Abascal J. L. F., Vega C.. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005;123:234505. doi: 10.1063/1.2121687. PubMed DOI

Cruces Chamorro V., Jungwirth P., Martinez-Seara H.. Building Water Models Compatible with Charge Scaling Molecular Dynamics. J. Phys. Chemlett. 2024;15:2922–2928. doi: 10.1021/acs.jpclett.4c00344. PubMed DOI PMC

Abraham M. J., Murtola T., Schulz R., Pall S., Smith J. C., Hess B., Lindahl E.. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Huang J., MacKerell D., MacKerell J.. CHARMM36 All-Atom Additive ProteinForce Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013;34:2135. doi: 10.1002/jcc.23354. PubMed DOI PMC

Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I.. et al. CHARMMGeneral Force Field (CGenFF): A Force Field for Drug-like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010;31:671. doi: 10.1002/jcc.21367. PubMed DOI PMC

Mason P. E., Martinek T., Fabian B., Vazdar M., Jungwirth P., Tichacek O., Duboué-Dijon E., Martinez-Seara H.. Hydration of Biologically Relevant Tetramethylammonium Cation by Neutron Scattering and MolecularDynamics. Phys. Chem. Chem. Phys. 2024;26:3208–3218. doi: 10.1039/D3CP05449G. PubMed DOI PMC

Pluharova E., Fischer H. E., Mason P. E., Jungwirth P.. Hydration of the Chloride Ion in Concentrated Aqueous Solutions Using Neutron Scattering andMolecular Dynamics. Mol. Phys. 2014;112:1230–1240. doi: 10.1080/00268976.2013.875231. DOI

Bussi G., Donadio D., Parrinello M.. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007;126(1):014101. doi: 10.1063/1.2408420. PubMed DOI

Bussi G., Parrinello M.. Stochastic Thermostats: Comparison of Local and Global Schemes. Comput. Phys. Commun. 2008;179:26–29. doi: 10.1016/j.cpc.2008.01.006. DOI

Pall S., Hess B.. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI

Humphrey W., Dalke A., Schulten K.. VMD: Visual Molecular Dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Rasmussen, C. E. ; Williams, C. K. I. . Gaussian Processes for MachineLearning; The MIT Press, 2005.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V.. et al. Scikit-learn: Machine Learning in Python. J. Mach.Learn. Res. 2011;12:2825–2830.

Shanks B. L., Sullivan H. W., Hoepfner M. P.. Bayesian Analysis Revealsthe Key to Extracting Pair Potentials from Neutron Scattering Data. J. Phys. Chem. Lett. 2024;15:12608–12618. doi: 10.1021/acs.jpclett.4c02941. PubMed DOI

Yoo J., Aksimentiev A.. New Tricks for Old Dogs: Improving the Accuracy of Biomolecular Force Fields by Pair-Specific Corrections to Non-BondedInteractions. Phys. Chem. Chem. Phys. 2018;20:8432. doi: 10.1039/C7CP08185E. PubMed DOI PMC

Croitoru A., Park S.-J., Kumar A., Lee J., Im W., MacKerell A. D. J., Aleksandrov A.. Additive CHARMM36 Force Field for Nonstandard AminoAcids. J. Chem. Theory Comput. 2021;17:3554–3570. doi: 10.1021/acs.jctc.1c00254. PubMed DOI PMC

Shanks B. L., Sullivan H. W., Shazed A. R., Hoepfner M. P.. Accelerated Bayesian Inference for Molecular Simulations Using Local Gaussian Process Surrogate Models. J. Chem. Theory Comput. 2024;20:3798–3808. doi: 10.1021/acs.jctc.3c01358. PubMed DOI

Shanks B. L., Potoff J. J., Hoepfner M. P.. Transferable Force Fields from Experimental Scattering Data with Machine Learning Assisted Structure Refinement. J. Phys. Chem. Lett. 2022;13:11512–11520. doi: 10.1021/acs.jpclett.2c03163. PubMed DOI

de Almeida Pontes P. V., Ayumi Shiwaku I., Maximo G. J., CaldasBatista E. A.. Choline Chloride-Based Deep Eutectic Solvents as Potential Solvent for Extraction of Phenolic Compounds from Olive Leaves: Extraction Optimization and Solvent Characterization. Food Chem. 2021;352:129346. doi: 10.1016/j.foodchem.2021.129346. PubMed DOI

García A., Rodríguez-Juan E., Rodríguez-Gutiérrez G., Rios J. J., Fernandez-Bolaños J.. Extraction of Phenolic Compounds from Virgin Olive Oilby Deep Eutectic Solvents (DESs) Food Chem. 2016;197:554–561. doi: 10.1016/j.foodchem.2015.10.131. PubMed DOI

Nguyen N. L. L., Tichacek O., Jungwirth P., Martinez-Seara H., Mason P. E., Duboué-Dijon E.. Ion pairing in aqueous tetramethylammonium–acetate solutions by neutron scattering and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2025;27:2553–2562. doi: 10.1039/D4CP04312J. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...