Cation-π Interactions in Biomolecular Contexts by Neutron Scattering and Molecular Dynamics: A Case Study of the Tetramethylammonium Cation
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40576099
PubMed Central
PMC12257538
DOI
10.1021/acs.jpcb.5c02001
Knihovny.cz E-resources
- MeSH
- Cations chemistry MeSH
- Quaternary Ammonium Compounds * chemistry MeSH
- Neutron Diffraction MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cations MeSH
- Quaternary Ammonium Compounds * MeSH
- tetramethylammonium MeSH Browser
Cation-π interactions involving the tetramethylammonium motif are prevalent in biological systems, playing crucial roles in membrane protein function, DNA expression regulation, and protein folding. However, accurately modeling cation-π interactions where electronic polarization plays a critical role is computationally challenging, especially in large biomolecular systems. This study implements a physically justified electronic continuum correction (ECC) to the CHARMM36 force field, scaling ionic charges by a factor of 0.75 to effectively account for electronic polarization without additional computational overhead. This approach, while not specifically designed for cation-π interactions, is shown here to significantly improve predictions of the structure of an aqueous tetramethylammonium-pyridine complex as compared to neutron diffraction data. This result, together with computational predictions for the structure of the aqueous tetramethylammonium-phenol complex, underscores the potential of ECC as a versatile method to improve the description of cation-π interactions in biomolecular simulations.
See more in PubMed
Ooi S. K. T., Qiu C., Bernstein E., Li K., Jia D., Yang Z., Erdjument-Bromage H., Tempst P., Lin S.-P., Allis C. D.. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novomethylation of DNA. Nature. 2007;448:714–717. doi: 10.1038/nature05987. PubMed DOI PMC
Gao J., Chou L. W., Auerbach A.. The Nature of Cation-Pi Binding: Interactions between Tetramethylammonium Ion and Benzene in Aqueous Solution. Biophys. J. 1993;65:43–47. doi: 10.1016/S0006-3495(93)81031-2. PubMed DOI PMC
Cheng J., Goldstein R., Gershenson A., Stec B., Roberts M. F.. The Cation- Box Is a Specific Phosphatidylcholine Membrane Targeting Motif *. J. Biol. Chem. 2013;288:14863–14873. doi: 10.1074/jbc.M113.466532. PubMed DOI PMC
Bellamy H. D., Lim L. W., Mathews F. S., Dunham W. R.. Studies ofCrystalline Trimethylamine Dehydrogenase in Three Oxidation States and in the Presence of Substrate and Inhibitor. J. Biol. Chem. 1989;264:11887–11892. doi: 10.1016/S0021-9258(18)80149-1. PubMed DOI
Dougherty D. A.. Cation-Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp. Science. 1996;271:163–168. doi: 10.1126/science.271.5246.163. PubMed DOI
Tsuzuki S., Yoshida M., Uchimaru T., Mikami M.. The Origin of the Cation/ Interaction: The Significant Importance of the Induction in Li+ and Na+ Complexes. J. Phys. Chem. A. 2001;105:769–773. doi: 10.1021/jp003287v. DOI
Khan H. M., MacKerell A. D. J., Reuter N.. Cation- Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2019;15:7–12. doi: 10.1021/acs.jctc.8b00839. PubMed DOI PMC
Turupcu A., Tirado-Rives J., Jorgensen W. L.. Explicit Representation of Cation- Interactions in Force Fields with 1/R4 Nonbonded Terms. J. Chem. Theory Comput. 2020;16:7184–7194. doi: 10.1021/acs.jctc.0c00847. PubMed DOI PMC
Lin F.-Y., MacKerell D., MacKerell J.. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins. J. Comput. Chem. 2020;41:439–448. doi: 10.1002/jcc.26067. PubMed DOI PMC
Felder C., Jiang H.-L., Zhu W.-L., Chen K.-X., Silman I., Botti S. A., Sussman J. L.. Quantum/Classical Mechanical Comparison of Cation-Interactions between Tetramethylammonium and Benzene. J.Phys. Chem. A. 2001;105:1326–1333. doi: 10.1021/jp002933n. DOI
Teng X., Yu W., MacKerell A. D.. Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field. J. Phys. Chem. Lett. 2025;16:1016–1023. doi: 10.1021/acs.jpclett.4c03451. PubMed DOI PMC
Leontyev I. V., Stuchebrukhov A. A.. Electronic Continuum Model for Molecular Dynamics Simulations of Biological Molecules. J.Chem. Theory Comput. 2010;6:1498–1508. doi: 10.1021/ct9005807. PubMed DOI PMC
Nencini R., Tempra C., Biriukov D., Riopedre-Fernandez M., Cruces Chamorro V., Polak J., Mason P. E., Ondo D., Heyda J., Ollila O. H. S.. et al. Effective Inclusion of Electronic PolarizationImproves the Description of Electrostatic Interactions: TheprosECCo75 Biomolecular Force Field. J. Chem. Theory Comput. 2024;20:7546–7559. doi: 10.1021/acs.jctc.4c00743. PubMed DOI PMC
MacKerell A. D. J., Bashford D., Bellott M., Dunbrack R. L. J., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S.. et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI
Jorge M., Barrera M. C., Milne A. W., Ringrose C., Cole D. J.. What Is the Optimal Dipole Moment for Nonpolarizable Models of Liquids? J. Chem. Theory Comput. 2023;19:1790–1804. doi: 10.1021/acs.jctc.2c01123. PubMed DOI PMC
Jorge M.. Theoretically Grounded Approaches to Account for Polarization Effects in Fixed-Charge Force Fields. J. Chem. Phys. 2024;161(18):180901. doi: 10.1063/5.0236899. PubMed DOI
McFegan L., Juhasz A., Marton P., Hórvölgyi Z., Jedlovszky-Hajdu A., Hantal G., Jedlovszky P.. Surface Affinity of Tetramethylammonium Iodide inAqueous Solutions: A Combined Experimental and Computer Simulation Study. J. Phys. Chem. B. 2023;127:5341–5352. doi: 10.1021/acs.jpcb.3c01370. PubMed DOI PMC
de Jong P. H. K., Neilson G. W.. Structural Studies of Ionic Solutions underCritical Conditions. J. Phys.: Condens. Matter. 1996;8:9275. doi: 10.1088/0953-8984/8/47/015. DOI
Mason P. E., Neilson G. W., Dempsey C. E., Brady J. W.. NeutronDiffraction and Simulation Studies of CsNO3 and Cs2CO3 Solutions. J. Am. Chem. Soc. 2006;128:15136–15144. doi: 10.1021/ja0613207. PubMed DOI
Mason P. E., Ansell S., Neilson G. W.. Neutron Diffraction Studies of Electrolytes in Null Water: A Direct Determination of the First HydrationZone of Ions. J. Phys.: condens. Matter. 2006;18:8437. doi: 10.1088/0953-8984/18/37/004. PubMed DOI
Neilson G. W., Mason P. E., Ramos S., Sullivan D.. Neutronand X-Ray Scattering Studies of Hydration in Aqueous Solutions. Philos. Trans. R. Soc. London, A. 2001;359:1575–1591. doi: 10.1098/rsta.2001.0866. DOI
Turner J. A. S., Soper A. K., Finney J. L.. A neutron-diffraction study of tetramethylammonium chloride in aqueous solution. Mol. Phys. 1990;70:679–700. doi: 10.1080/00268979000102661. DOI
Mason P. E., Neilson G. W., Dempsey C. E., Price D. L., Saboungi M.-L., Brady J. W.. Observation of Pyridine Aggregation in Aqueous SolutionUsing Neutron Scattering Experiments and MD Simulations. J. Phys. Chem. B. 2010;114:5412–5419. doi: 10.1021/jp9097827. PubMed DOI PMC
Turner J., Soper A., Finney J.. Water Structure in Aqueous Solutions ofTetramethylammonium Chloride. Mol. Phys. 1992;77:411–429. doi: 10.1080/00268979200102521. DOI
Turner J. Z., Soper A. K., Finney J. L.. Ionic versus Apolar Behavior of theTetramethylammonium Ion in Water. J. Chem. Phys. 1995;102:5438–5443. doi: 10.1063/1.469271. DOI
Nilsson E. J., Alfredsson V., Bowron D. T., Edler K. J.. A Neutron Scattering and Modelling Study of Aqueous Solutions of Tetramethylammoniumand Tetrapropylammonium Bromide. Phys. Chem. Chem. Phys. 2016;18:11193–11201. doi: 10.1039/C6CP01389A. PubMed DOI
Fischer H., Cuello G., Palleau P., Feltin D., Barnes A., Badyal Y., Simonson J.. D4c: A Very High Precision Diffractometer for Disordered Materials. Appl. Phys. A: Mater. Sci. Process. 2002;74:s160–s162. doi: 10.1007/s003390101087. DOI
Mason P. E., Ansell H. E., Neilson G. W., Rempe S.. Towards a Fuller Understanding of Protein–Lipid Interactions. J. Phys. Chem. B. 2015;119(5):2003–2009. PubMed
Herdman G. J., Neilson G. W.. Ferric Ion (Fe(III)) Coordination inConcentrated Aqueous Electrolyte Solutions. J. Phys.: condens. Matter. 1992;4:627. doi: 10.1088/0953-8984/4/3/004. DOI
Enderby J. E., Richards R. E., Williams R. J. P.. Neutron and X-ray Scattering from Aqueous Solutions. Proc. R. Soc. London A. 1997;345:107–17. doi: 10.1098/rspa.1975.0128. DOI
Abascal J. L. F., Vega C.. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005;123:234505. doi: 10.1063/1.2121687. PubMed DOI
Cruces Chamorro V., Jungwirth P., Martinez-Seara H.. Building Water Models Compatible with Charge Scaling Molecular Dynamics. J. Phys. Chemlett. 2024;15:2922–2928. doi: 10.1021/acs.jpclett.4c00344. PubMed DOI PMC
Abraham M. J., Murtola T., Schulz R., Pall S., Smith J. C., Hess B., Lindahl E.. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Huang J., MacKerell D., MacKerell J.. CHARMM36 All-Atom Additive ProteinForce Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013;34:2135. doi: 10.1002/jcc.23354. PubMed DOI PMC
Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I.. et al. CHARMMGeneral Force Field (CGenFF): A Force Field for Drug-like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010;31:671. doi: 10.1002/jcc.21367. PubMed DOI PMC
Mason P. E., Martinek T., Fabian B., Vazdar M., Jungwirth P., Tichacek O., Duboué-Dijon E., Martinez-Seara H.. Hydration of Biologically Relevant Tetramethylammonium Cation by Neutron Scattering and MolecularDynamics. Phys. Chem. Chem. Phys. 2024;26:3208–3218. doi: 10.1039/D3CP05449G. PubMed DOI PMC
Pluharova E., Fischer H. E., Mason P. E., Jungwirth P.. Hydration of the Chloride Ion in Concentrated Aqueous Solutions Using Neutron Scattering andMolecular Dynamics. Mol. Phys. 2014;112:1230–1240. doi: 10.1080/00268976.2013.875231. DOI
Bussi G., Donadio D., Parrinello M.. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007;126(1):014101. doi: 10.1063/1.2408420. PubMed DOI
Bussi G., Parrinello M.. Stochastic Thermostats: Comparison of Local and Global Schemes. Comput. Phys. Commun. 2008;179:26–29. doi: 10.1016/j.cpc.2008.01.006. DOI
Pall S., Hess B.. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI
Humphrey W., Dalke A., Schulten K.. VMD: Visual Molecular Dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Rasmussen, C. E. ; Williams, C. K. I. . Gaussian Processes for MachineLearning; The MIT Press, 2005.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V.. et al. Scikit-learn: Machine Learning in Python. J. Mach.Learn. Res. 2011;12:2825–2830.
Shanks B. L., Sullivan H. W., Hoepfner M. P.. Bayesian Analysis Revealsthe Key to Extracting Pair Potentials from Neutron Scattering Data. J. Phys. Chem. Lett. 2024;15:12608–12618. doi: 10.1021/acs.jpclett.4c02941. PubMed DOI
Yoo J., Aksimentiev A.. New Tricks for Old Dogs: Improving the Accuracy of Biomolecular Force Fields by Pair-Specific Corrections to Non-BondedInteractions. Phys. Chem. Chem. Phys. 2018;20:8432. doi: 10.1039/C7CP08185E. PubMed DOI PMC
Croitoru A., Park S.-J., Kumar A., Lee J., Im W., MacKerell A. D. J., Aleksandrov A.. Additive CHARMM36 Force Field for Nonstandard AminoAcids. J. Chem. Theory Comput. 2021;17:3554–3570. doi: 10.1021/acs.jctc.1c00254. PubMed DOI PMC
Shanks B. L., Sullivan H. W., Shazed A. R., Hoepfner M. P.. Accelerated Bayesian Inference for Molecular Simulations Using Local Gaussian Process Surrogate Models. J. Chem. Theory Comput. 2024;20:3798–3808. doi: 10.1021/acs.jctc.3c01358. PubMed DOI
Shanks B. L., Potoff J. J., Hoepfner M. P.. Transferable Force Fields from Experimental Scattering Data with Machine Learning Assisted Structure Refinement. J. Phys. Chem. Lett. 2022;13:11512–11520. doi: 10.1021/acs.jpclett.2c03163. PubMed DOI
de Almeida Pontes P. V., Ayumi Shiwaku I., Maximo G. J., CaldasBatista E. A.. Choline Chloride-Based Deep Eutectic Solvents as Potential Solvent for Extraction of Phenolic Compounds from Olive Leaves: Extraction Optimization and Solvent Characterization. Food Chem. 2021;352:129346. doi: 10.1016/j.foodchem.2021.129346. PubMed DOI
García A., Rodríguez-Juan E., Rodríguez-Gutiérrez G., Rios J. J., Fernandez-Bolaños J.. Extraction of Phenolic Compounds from Virgin Olive Oilby Deep Eutectic Solvents (DESs) Food Chem. 2016;197:554–561. doi: 10.1016/j.foodchem.2015.10.131. PubMed DOI
Nguyen N. L. L., Tichacek O., Jungwirth P., Martinez-Seara H., Mason P. E., Duboué-Dijon E.. Ion pairing in aqueous tetramethylammonium–acetate solutions by neutron scattering and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2025;27:2553–2562. doi: 10.1039/D4CP04312J. PubMed DOI