Building Water Models Compatible with Charge Scaling Molecular Dynamics

. 2024 Mar 14 ; 15 (10) : 2922-2928. [epub] 20240307

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38451169

Charge scaling has proven to be an efficient way to account in a mean-field manner for electronic polarization by aqueous ions in force field molecular dynamics simulations. However, commonly used water models with dielectric constants over 50 are not consistent with this approach leading to "overscaling", i.e., generally too weak ion-ion interactions. Here, we build water models fully compatible with charge scaling, i.e., having the correct low-frequency dielectric constant of about 45. To this end, we employ advanced optimization and machine learning schemes in order to explore the vast parameter space of four-site water models efficiently. As an a priori unwarranted positive result, we find a sizable range of force field parameters that satisfy the above dielectric constant constraint providing at the same time accuracy with respect to experimental data comparable with the best existing four-site water models such as TIP4P/2005, TIP4P-FB, or OPC. The present results thus open the way to the development of a consistent charge scaling force field for modeling ions in aqueous solutions.

Zobrazit více v PubMed

Kontogeorgis G. M.; Holster A.; Kottaki N.; Tsochantaris E.; Topsøe F.; Poulsen J.; Bache M.; Liang X.; Blom N. S.; Kronholm J. Water structure, properties and some applications – A review. Chemical Thermodynamics and Thermal Analysis 2022, 6, 100053.10.1016/j.ctta.2022.100053. DOI

Rahman A.; Stillinger F. H. Molecular Dynamics Study of Liquid Water. J. Chem. Phys. 1971, 55, 3336–3359. 10.1063/1.1676585. DOI

Jorgensen W. L. Quantum and Statistical Mechanical Studies of Liquids. 10. Transferable Intermolecular Potential Functions for Water, Alcohols, and Ethers. Application to Liquid Water. J. Am. Chem. Soc. 1981, 103, 335–340. 10.1021/ja00392a016. DOI

Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; Hermans J. Interaction Models for Water in Relation to Protein Hydration. Intermolecular Forces: The Jerusalem Symposia on Quantum Chemistry and Biochemistry 1981, 14, 331–342. 10.1007/978-94-015-7658-1_21. DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Perrone M.; Capelli R.; Empereur-mot C.; Hassanali A.; Pavan G. M. Lessons Learned from Multiobjective Automatic Optimizations of Classical Three-Site Rigid Water Models Using Microscopic and Macroscopic Target Experimental Observables. J. Chem. Eng. Data 2023, 68, 3228–3241. 10.1021/acs.jced.3c00538. PubMed DOI PMC

Abascal J. L. F.; Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.10.1063/1.2121687. PubMed DOI

Wang L.-P.; Martinez T. J.; Pande V. S. Building Force Fields: An Automatic, Systematic, and Reproducible Approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891. 10.1021/jz500737m. PubMed DOI PMC

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Sedano L. F.; Blazquez S.; Noya E. G.; Vega C.; Troncoso J. Maximum in density of electrolyte solutions: Learning about ion–water interactions and testing the Madrid-2019 force field. J. Chem. Phys. 2022, 156, 154502.10.1063/5.0087679. PubMed DOI

Lide D. R.CRC Handbook of Chemistry and Physics, 74th ed.; CRC Press, 1993.

Holz M.; Heil S. R.; Sacco A. Temperature-Dependent Self-Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMRPFG Measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742. 10.1039/b005319h. DOI

Fernández D. P.; Goodwin A. R. H.; Lemmon E. W.; Levelt Sengers J. M. H.; Williams R. C. A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–Hückel Coefficients. J. Phys. Chem. Ref. Data 1997, 26, 1125–1166. 10.1063/1.555997. DOI

Vega C.; Abascal J. L. F. Simulating Water with Rigid Non-Polarizable Models: A General Perspective. Phys. Chem. Chem. Phys. 2011, 13, 19663–19688. 10.1039/c1cp22168j. PubMed DOI

Tempra C.; Ollila O. H. S.; Javanainen M. Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension. J. Chem. Theory Comput. 2022, 18, 1862–1869. 10.1021/acs.jctc.1c00951. PubMed DOI PMC

Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009, 130, 085102.10.1063/1.3060164. PubMed DOI PMC

Schiebener P.; Straub J.; Levelt Sengers J. M. H.; Gallagher J. S. Refractive Index of Water and Steam As Function of Wavelength, Temperature and Density. J. Phys. Chem. Ref. Data 1990, 19, 677–717. 10.1063/1.555859. DOI

Farahvash A.; Leontyev I.; Stuchebrukhov A. Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water. J. Phys. Chem. A 2018, 122, 9243–9250. 10.1021/acs.jpca.8b07953. PubMed DOI

Lamoureux G.; MacKerell A. D.; Roux B. A Simple Polarizable Model of Water Based on Classical Drude Oscillators. J. Chem. Phys. 2003, 119, 5185–5197. 10.1063/1.1598191. DOI

Das A. K.; Demerdash O. N.; Head-Gordon T. Improvements to the AMOEBA Force Field by Introducing Anisotropic Atomic Polarizability of the Water Molecule. J. Chem. Theory Comput. 2018, 14, 6722–6733. 10.1021/acs.jctc.8b00978. PubMed DOI

Kirby B. J.; Jungwirth P. Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations. J. Phys. Chem. Lett. 2019, 10, 7531–7536. 10.1021/acs.jpclett.9b02652. PubMed DOI

Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 050901.10.1063/5.0017775. PubMed DOI

Vega C. Water: One Molecule, Two Surfaces, One Mistake. Mol. Phys. 2015, 113, 1145–1163. 10.1080/00268976.2015.1005191. DOI

Storn R.; Price K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces. J. Global Optim. 1997, 11, 341–359. 10.1023/A:1008202821328. DOI

Goodfellow I. J.; Bengio Y.; Courville A.. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Yeh I.-C.; Hummer G. System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions. J. Phys. Chem. B 2004, 108, 15873–15879. 10.1021/jp0477147. DOI

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Hoover W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI

Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI

Skinner L. B.; Huang C.; Schlesinger D.; Pettersson L. G. M.; Nilsson A.; Benmore C. J. Benchmark Oxygen-Oxygen Pair-Distribution Function of Ambient Water from X-Ray Diffraction Measurements with a Wide Q-Range. J. Chem. Phys. 2013, 138, 074506.10.1063/1.4790861. PubMed DOI

Malmberg C. G.; Maryott A. A. Dielectric Constant of Water from 0 to 100 C. J. Res. Natl. Bur. Stand. 1956, 56, 1.10.6028/jres.056.001. DOI

Blazquez S.; Vega C. Melting points of water models: Current situation. J. Chem. Phys. 2022, 156, 216101.10.1063/5.0093815. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...