Building Water Models Compatible with Charge Scaling Molecular Dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38451169
PubMed Central
PMC10945568
DOI
10.1021/acs.jpclett.4c00344
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Charge scaling has proven to be an efficient way to account in a mean-field manner for electronic polarization by aqueous ions in force field molecular dynamics simulations. However, commonly used water models with dielectric constants over 50 are not consistent with this approach leading to "overscaling", i.e., generally too weak ion-ion interactions. Here, we build water models fully compatible with charge scaling, i.e., having the correct low-frequency dielectric constant of about 45. To this end, we employ advanced optimization and machine learning schemes in order to explore the vast parameter space of four-site water models efficiently. As an a priori unwarranted positive result, we find a sizable range of force field parameters that satisfy the above dielectric constant constraint providing at the same time accuracy with respect to experimental data comparable with the best existing four-site water models such as TIP4P/2005, TIP4P-FB, or OPC. The present results thus open the way to the development of a consistent charge scaling force field for modeling ions in aqueous solutions.
Zobrazit více v PubMed
Kontogeorgis G. M.; Holster A.; Kottaki N.; Tsochantaris E.; Topsøe F.; Poulsen J.; Bache M.; Liang X.; Blom N. S.; Kronholm J. Water structure, properties and some applications – A review. Chemical Thermodynamics and Thermal Analysis 2022, 6, 100053.10.1016/j.ctta.2022.100053. DOI
Rahman A.; Stillinger F. H. Molecular Dynamics Study of Liquid Water. J. Chem. Phys. 1971, 55, 3336–3359. 10.1063/1.1676585. DOI
Jorgensen W. L. Quantum and Statistical Mechanical Studies of Liquids. 10. Transferable Intermolecular Potential Functions for Water, Alcohols, and Ethers. Application to Liquid Water. J. Am. Chem. Soc. 1981, 103, 335–340. 10.1021/ja00392a016. DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; Hermans J. Interaction Models for Water in Relation to Protein Hydration. Intermolecular Forces: The Jerusalem Symposia on Quantum Chemistry and Biochemistry 1981, 14, 331–342. 10.1007/978-94-015-7658-1_21. DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Perrone M.; Capelli R.; Empereur-mot C.; Hassanali A.; Pavan G. M. Lessons Learned from Multiobjective Automatic Optimizations of Classical Three-Site Rigid Water Models Using Microscopic and Macroscopic Target Experimental Observables. J. Chem. Eng. Data 2023, 68, 3228–3241. 10.1021/acs.jced.3c00538. PubMed DOI PMC
Abascal J. L. F.; Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.10.1063/1.2121687. PubMed DOI
Wang L.-P.; Martinez T. J.; Pande V. S. Building Force Fields: An Automatic, Systematic, and Reproducible Approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891. 10.1021/jz500737m. PubMed DOI PMC
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Sedano L. F.; Blazquez S.; Noya E. G.; Vega C.; Troncoso J. Maximum in density of electrolyte solutions: Learning about ion–water interactions and testing the Madrid-2019 force field. J. Chem. Phys. 2022, 156, 154502.10.1063/5.0087679. PubMed DOI
Lide D. R.CRC Handbook of Chemistry and Physics, 74th ed.; CRC Press, 1993.
Holz M.; Heil S. R.; Sacco A. Temperature-Dependent Self-Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMRPFG Measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742. 10.1039/b005319h. DOI
Fernández D. P.; Goodwin A. R. H.; Lemmon E. W.; Levelt Sengers J. M. H.; Williams R. C. A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–Hückel Coefficients. J. Phys. Chem. Ref. Data 1997, 26, 1125–1166. 10.1063/1.555997. DOI
Vega C.; Abascal J. L. F. Simulating Water with Rigid Non-Polarizable Models: A General Perspective. Phys. Chem. Chem. Phys. 2011, 13, 19663–19688. 10.1039/c1cp22168j. PubMed DOI
Tempra C.; Ollila O. H. S.; Javanainen M. Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension. J. Chem. Theory Comput. 2022, 18, 1862–1869. 10.1021/acs.jctc.1c00951. PubMed DOI PMC
Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009, 130, 085102.10.1063/1.3060164. PubMed DOI PMC
Schiebener P.; Straub J.; Levelt Sengers J. M. H.; Gallagher J. S. Refractive Index of Water and Steam As Function of Wavelength, Temperature and Density. J. Phys. Chem. Ref. Data 1990, 19, 677–717. 10.1063/1.555859. DOI
Farahvash A.; Leontyev I.; Stuchebrukhov A. Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water. J. Phys. Chem. A 2018, 122, 9243–9250. 10.1021/acs.jpca.8b07953. PubMed DOI
Lamoureux G.; MacKerell A. D.; Roux B. A Simple Polarizable Model of Water Based on Classical Drude Oscillators. J. Chem. Phys. 2003, 119, 5185–5197. 10.1063/1.1598191. DOI
Das A. K.; Demerdash O. N.; Head-Gordon T. Improvements to the AMOEBA Force Field by Introducing Anisotropic Atomic Polarizability of the Water Molecule. J. Chem. Theory Comput. 2018, 14, 6722–6733. 10.1021/acs.jctc.8b00978. PubMed DOI
Kirby B. J.; Jungwirth P. Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations. J. Phys. Chem. Lett. 2019, 10, 7531–7536. 10.1021/acs.jpclett.9b02652. PubMed DOI
Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 050901.10.1063/5.0017775. PubMed DOI
Vega C. Water: One Molecule, Two Surfaces, One Mistake. Mol. Phys. 2015, 113, 1145–1163. 10.1080/00268976.2015.1005191. DOI
Storn R.; Price K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces. J. Global Optim. 1997, 11, 341–359. 10.1023/A:1008202821328. DOI
Goodfellow I. J.; Bengio Y.; Courville A.. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
Yeh I.-C.; Hummer G. System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions. J. Phys. Chem. B 2004, 108, 15873–15879. 10.1021/jp0477147. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Hoover W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Skinner L. B.; Huang C.; Schlesinger D.; Pettersson L. G. M.; Nilsson A.; Benmore C. J. Benchmark Oxygen-Oxygen Pair-Distribution Function of Ambient Water from X-Ray Diffraction Measurements with a Wide Q-Range. J. Chem. Phys. 2013, 138, 074506.10.1063/1.4790861. PubMed DOI
Malmberg C. G.; Maryott A. A. Dielectric Constant of Water from 0 to 100 C. J. Res. Natl. Bur. Stand. 1956, 56, 1.10.6028/jres.056.001. DOI
Blazquez S.; Vega C. Melting points of water models: Current situation. J. Chem. Phys. 2022, 156, 216101.10.1063/5.0093815. PubMed DOI