NMR-Derived Salt Bridges in Insulin Analogue: Resolving Artifactual Overbinding in Molecular Dynamics via Charge Scaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40665488
PubMed Central
PMC12302216
DOI
10.1021/acs.jpclett.5c01786
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Salt bridges are ionic interactions that are of great importance in protein recognition. However, their structural description using X-ray crystallography or NMR may be inconclusive. Classical molecular dynamics (MD) used for the interpretation neglects electronic polarization, which results in artifactual overbinding. Here, we resolve the problem via charge scaling, which accounts for electronic polarization in a mean-field way. We study three salt bridges in insulin analogue. New NMR ensembles are generated via NOE-restrained MD using ff19SB and CHARMM36m force fields and the scaled-charge prosECCo75. Tens of μs of unrestrained MD show in a statistically converged manner that ff19SB induces a non-native salt bridge. This behavior is quantified via umbrella sampling of salt bridge dissociation, which indicates a rather high strength of up to 4 and 5 kcal mol-1 for CHARMM36m and ff19SB, respectively. In contrast, prosECCo75 gives a biologically reasonable dissociation barrier of 1 kcal mol-1. Our results indicate that a physically justified description of charge-charge interactions within a nonpolarizable MD framework reliably describes aqueous biomolecular systems.
Zobrazit více v PubMed
Simonson T., Archontis G., Karplus M.. Free energy simulations come of age: Protein-ligand recognition. Acc. Chem. Res. 2002;35:430–437. doi: 10.1021/ar010030m. PubMed DOI
Sheinerman F. B, Norel R., Honig B.. Electrostatic aspects of protein-protein interactions. Curr. Opin. Struct. Biol. 2000;10:153–159. doi: 10.1016/S0959-440X(00)00065-8. PubMed DOI
Quan X., Liu J., Zhou J.. Multiscale modeling and simulations of protein adsorption: progresses and perspectives. Curr. Opin. Colloid Interface Sci. 2019;41:74–85. doi: 10.1016/j.cocis.2018.12.004. DOI
Leontyev I. V., Stuchebrukhov A. A.. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009;130:085102. doi: 10.1063/1.3060164. PubMed DOI PMC
Leontyev I. V., Stuchebrukhov A. A.. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011;13:2613–2626. doi: 10.1039/c0cp01971b. PubMed DOI
Kirby B. J., Jungwirth P.. Charge scaling manifesto: A way of reconciling the inherently macroscopic and microscopic natures of molecular simulations. J. Phys. Chem. Lett. 2019;10:7531–7536. doi: 10.1021/acs.jpclett.9b02652. PubMed DOI
Kohagen M., Lepšík M., Jungwirth P.. Calcium binding to calmodulin by molecular dynamics with effective polarization. J. Phys. Chem. Lett. 2014;5:3964–3969. doi: 10.1021/jz502099g. PubMed DOI
Kohagen M., Mason P. E., Jungwirth P.. Accounting for electronic polarization effects in aqueous sodium chloride via molecular dynamics aided by neutron scattering. J. Phys. Chem. B. 2016;120:1454–1460. doi: 10.1021/acs.jpcb.5b05221. PubMed DOI
Pluharova E., Fischer H. E., Mason P. E., Jungwirth P.. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 2014;112:1230–1240. doi: 10.1080/00268976.2013.875231. DOI
Kohagen M., Mason P. E., Jungwirth P.. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B. 2014;118:7902–7909. doi: 10.1021/jp5005693. PubMed DOI
Nencini R., Ollila O. H. S.. Charged small molecule binding to membranes in MD simulations evaluated against NMR experiments. J. Phys. Chem. B. 2022;126:6955–6963. doi: 10.1021/acs.jpcb.2c05024. PubMed DOI PMC
Biriukov D., Wang H.-W., Rampal N., Tempra C., Kula P., Neuefeind J. C., Stack A. G., Předota M.. The “good,” the “bad,” and the “hidden” in neutron scattering and molecular dynamics of ionic aqueous solutions. J. Chem. Phys. 2022;156:194505. doi: 10.1063/5.0093643. PubMed DOI
Zeron I. M., Abascal J. L. F., Vega C.. A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl–, and SO4 2– in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. J. Chem. Phys. 2019;151:134504. doi: 10.1063/1.5121392. PubMed DOI
Blazquez S., Conde M. M., Abascal J. L. F., Vega C.. The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F–, Br–, I–, Rb+, and Cs+ . J. Chem. Phys. 2022;156:044505. doi: 10.1063/5.0077716. PubMed DOI
Do T. M., Matubayasi N., Horinek D.. Development of a force field for ATP - how charge scaling controls self-association. Phys. Chem. Chem. Phys. 2025;27:6325–6333. doi: 10.1039/D4CP04270K. PubMed DOI
Le Nguyen N. L., Tichacek O., Jungwirth P., Martinez-Seara H., Mason P. E., Duboué-Dijon E.. Ion pairing in aqueous tetramethylammonium-acetate solutions by neutron scattering and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2025;27:2553–2562. doi: 10.1039/D4CP04312J. PubMed DOI
Tolmachev D. A., Boyko O. S., Lukasheva N. V., Martinez-Seara H., Karttunen M.. Overbinding and qualitative and quantitative changes caused by simple Na+ and K+ ions in polyelectrolyte simulations: Comparison of force fields with and without NBFIX and ECC corrections. J. Chem. Theory Comput. 2020;16:677–687. doi: 10.1021/acs.jctc.9b00813. PubMed DOI
Duboué-Dijon E., Delcroix P., Martinez-Seara H., Hladílková J., Coufal P., Křízek T., Jungwirth P.. Binding of divalent cations to insulin: Capillary electrophoresis and molecular simulations. J. Phys. Chem. B. 2018;122:5640–5648. doi: 10.1021/acs.jpcb.7b12097. PubMed DOI
Xue L., Yan N., Song C.. Deciphering Ca2+ permeation and valence selectivity in CaV 1: Molecular dynamics simulations reveal the three-ion knock-on mechanism. Proc. Natl. Acad. Sci. U.S.A. 2025;122:e2424694122. doi: 10.1073/pnas.2424694122. PubMed DOI PMC
Hui C., de Vries R., Kopec W., de Groot B. L.. Effective polarization in potassium channel simulations: Ion conductance, occupancy, voltage response, and selectivity. Proc. Natl. Acad. Sci. U.S.A. 2025;122:e2423866122. doi: 10.1073/pnas.2423866122. PubMed DOI PMC
Melcr J., Martinez-Seara H., Nencini R., Kolafa J., Jungwirth P., Ollila O. H. S.. Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization. J. Phys. Chem. B. 2018;122:4546–4557. doi: 10.1021/acs.jpcb.7b12510. PubMed DOI
Melcr J., Ferreira T. M., Jungwirth P., Ollila O. H. S.. Improved cation binding to lipid bilayers with negatively charged POPS by effective inclusion of electronic polarization. J. Chem. Theory Comput. 2020;16:738–748. doi: 10.1021/acs.jctc.9b00824. PubMed DOI
Bacle A., Buslaev P., Garcia-Fandino R., Favela-Rosales F., Mendes Ferreira T., Fuchs P. F. J., Gushchin I., Javanainen M., Kiirikki A. M., Madsen J. J.. et al. Inverse conformational selection in lipid-protein binding. J. Am. Chem. Soc. 2021;143:13701–13709. doi: 10.1021/jacs.1c05549. PubMed DOI
Biriukov D., Kroutil O., Kabeláč M., Ridley M. K., Machesky M. L., Předota M.. Oxalic acid adsorption on rutile: Molecular dynamics and ab initio calculations. Langmuir. 2019;35:7617–7630. doi: 10.1021/acs.langmuir.8b03984. PubMed DOI
Marchioro A., Bischoff M., Lütgebaucks C., Biriukov D., Předota M., Roke S.. Surface characterization of colloidal silica nanoparticles by second harmonic scattering: Quantifying the surface potential and interfacial water order. J. Phys. Chem. C. 2019;123:20393–20404. doi: 10.1021/acs.jpcc.9b05482. PubMed DOI PMC
Biriukov D., Kroutil O., Předota M.. Modeling of solid-liquid interfaces using scaled charges: rutile (110) surfaces. Phys. Chem. Chem. Phys. 2018;20:23954–23966. doi: 10.1039/C8CP04535F. PubMed DOI
Biriukov D., Fibich P., Předota M.. Zeta potential determination from molecular simulations. J. Phys. Chem. C. 2020;124:3159–3170. doi: 10.1021/acs.jpcc.9b11371. DOI
Phan L. X., Chamorro V. C., Martinez-Seara H., Crain J., Sansom M. S.P., Tucker S. J.. Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin. Biophys. J. 2023;122:1548–1556. doi: 10.1016/j.bpj.2023.03.026. PubMed DOI PMC
Lepšík M., Sommer R., Kuhaudomlarp S., Lelimousin M., Paci E., Varrot A., Titz A., Imberty A.. Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study. Eur. J. Med. Chem. 2019;177:212–220. doi: 10.1016/j.ejmech.2019.05.049. PubMed DOI
Wilson C. J., Gapsys V., de Groot B. L.. Improving pKa predictions with reparameterized force fields and free energy calculations. J. Chem. Theory Comput. 2025;21:4095–4106. doi: 10.1021/acs.jctc.5c00031. PubMed DOI PMC
Schröder C.. Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys. Chem. Chem. Phys. 2012;14:3089–3102. doi: 10.1039/c2cp23329k. PubMed DOI PMC
Pal T., Vogel M.. On the relevance of electrostatic interactions for the structural relaxation of ionic liquids: A molecular dynamics simulation study. J. Chem. Phys. 2019;150:124501. doi: 10.1063/1.5085508. PubMed DOI
Chaumont A., Schurhammer R., Wipff G.. Aqueous interfaces with hydrophobic room-temperature ionic liquids: A molecular dynamics study. J. Phys. Chem. B. 2005;109:18964–18973. doi: 10.1021/jp052854h. PubMed DOI
Kumar S., Nussinov R.. Close-Range electrostatic interactions in proteins. ChemBioChem. 2002;3:604–617. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X. PubMed DOI
Hendsch Z. S., Tidor B.. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994;3:211–226. doi: 10.1002/pro.5560030206. PubMed DOI PMC
Sindelar C. V., Hendsch Z. S., Tidor B.. Effects of salt bridges on protein structure and design. Protein Sci. 1998;7:1898–1914. doi: 10.1002/pro.5560070906. PubMed DOI PMC
Donald J. E., Kulp D. W., DeGrado W. F.. Salt bridges: geometrically specific, designable interactions. Proteins. 2011;79:898–915. doi: 10.1002/prot.22927. PubMed DOI PMC
Anderson D. E., Becktel W. J., Dahlquist F. W.. pH-Induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochem. 1990;29:2403–2408. doi: 10.1021/bi00461a025. PubMed DOI
Bush J., Makhatadze G. I.. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges. Proteins. 2011;79:2027–2032. doi: 10.1002/prot.23067. PubMed DOI
Lyu P. C., Gans P. J., Kallenbach N. R.. Energetic contribution of solvent-exposed ion pairs to alpha-helix structure. J. Mol. Biol. 1992;223:343–350. doi: 10.1016/0022-2836(92)90735-3. PubMed DOI
Sali D., Bycroft M., Fersht A. R.. Surface electrostatic interactions contribute little of stability of barnase. J. Mol. Biol. 1991;220:779–788. doi: 10.1016/0022-2836(91)90117-O. PubMed DOI
Serrano L., Horovitz A., Avron B., Bycroft M., Fersht A. R.. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochem. 1990;29:9343–9352. doi: 10.1021/bi00492a006. PubMed DOI
Pluhařová E., Marsalek O., Schmidt B., Jungwirth P.. Peptide salt bridge stability: from gas phase via microhydration to bulk water simulations. J. Chem. Phys. 2012;137:185101. doi: 10.1063/1.4765052. PubMed DOI
Debiec K. T., Gronenborn A. M., Chong L. T.. Evaluating the strength of salt bridges: A comparison of current biomolecular force fields. J. Phys. Chem. B. 2014;118:6561–6569. doi: 10.1021/jp500958r. PubMed DOI PMC
Lawrence M. C.. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 2021;52:101255. doi: 10.1016/j.molmet.2021.101255. PubMed DOI PMC
Žáková L., Kletvíková E., Veverka V., Lepšík M., Watson C. J., Turkenburg J. P., Jiráček J., Brzozowski A. M.. Structural integrity of the B24 site in human insulin is important for hormone functionality. J. Biol. Chem. 2013;288:10230–10240. doi: 10.1074/jbc.M112.448050. PubMed DOI PMC
Tian C., Kasavajhala K., Belfon K. A. A., Raguette L., Huang H., Migues A. N., Bickel J., Wang Y., Pincay J., Wu Q.. et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI
Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., Vorobyov I., MacKerell A. D. J., Pastor R. W.. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
Nencini R., Tempra C., Biriukov D., Riopedre-Fernandez M., Cruces Chamorro V., Polak J., Mason P. E., Ondo D., Heyda J., Ollila O. H. S.. et al. Effective inclusion of electronic polarization improves the description of electrostatic interactions: The prosECCo75 biomolecular force field. J. Chem. Theory Comput. 2024;20:7546–7559. doi: 10.1021/acs.jctc.4c00743. PubMed DOI PMC
Lieblich S. A., Fang K. Y., Cahn J. K. B., Rawson J., LeBon J., Ku H. T., Tirrell D. A.. 4S-Hydroxylation of insulin at ProB28 accelerates hexamer dissociation and delays fibrillation. J. Am. Chem. Soc. 2017;139:8384–8387. doi: 10.1021/jacs.7b00794. PubMed DOI PMC
DeLano W. L.. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40:82–92.
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
MacKerell A. D. J., Bashford D., Bellott M., Dunbrack R. L. J., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S.. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI
Berendsen H. J. C., Grigera J. R., Straatsma T. P.. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Mason P. E., Jungwirth P., Duboué-Dijon E.. Quantifying the strength of a salt Bridge by neutron scattering and molecular dynamics. J. Phys. Chem. Lett. 2019;10:3254–3259. doi: 10.1021/acs.jpclett.9b01309. PubMed DOI
Yurenko Y. P., Muždalo A., Černeková M., Pecina A., Řezáč J., Fanfrlík J., Žáková L., Jiráček J., Lepšík M.. Multiscale computational protocols for accurate residue interactions at the flexible insulin-receptor interface. J. Chem. Inf. Model. 2025;65:5690–5705. doi: 10.1021/acs.jcim.5c00772. PubMed DOI PMC
Gorai B., Vashisth H.. Progress in simulation studies of insulin structure and function. Front. Endocrinol. 2022;13:908724. doi: 10.3389/fendo.2022.908724. PubMed DOI PMC
Gorai B., Vashisth H.. Structural models of viral insulin-like peptides and their analogs. Proteins. 2023;91:62–73. doi: 10.1002/prot.26410. PubMed DOI PMC
Mendes de Oliveira D., Zukowski S. R., Palivec V., Hénin J., Martinez-Seara H., Ben-Amotz D., Jungwirth P., Duboué-Dijon E.. Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy. Phys. Chem. Chem. Phys. 2020;22:24014–24027. doi: 10.1039/D0CP02987D. PubMed DOI
Cruces Chamorro V., Jungwirth P., Martinez-Seara H.. Building water models compatible with charge scaling molecular dynamics. J. Phys. Chem. Lett. 2024;15:2922–2928. doi: 10.1021/acs.jpclett.4c00344. PubMed DOI PMC
Smith G. D., Pangborn W. A., Blessing R. H.. The structure of T6 human insulin at 1.0 Åresolution. Acta Crystallogr. D. 2003;59:474–482. doi: 10.1107/S0907444902023685. PubMed DOI
Sakabe, N. ; Sakabe, K. ; Sasaki, K. ; Murayoshi, M. . 0.92A structure of 2Zn human insulin at 100K. 2013; Protein Data Bank: 3W7Y.
Lisgarten D. R., Palmer R. A., Lobley C. M. C., Naylor C. E., Chowdhry B. Z., Al-Kurdi Z. I., Badwan A. A., Howlin B. J., Gibbons N. C. J., Saldanha J. W.. et al. Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100K. Chem. Cent. J. 2017;11:73. doi: 10.1186/s13065-017-0296-y. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K.. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Jo S., Kim T., Iyer V. G., Im W.. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Case, D. A. ; Belfon, K. ; Ben-Shalom, I. Y. ; Brozell, S. R. ; Cerutti, D. S. ; Cheatham, T. E., III ; Cruzeiro, V. W. D. ; Darden, T. A. ; Duke, R. E. ; Giambasu, G. . et al. AMBER 20; University of California: San Francisco, CA, 2020.
Nosé S.. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81:511–519. doi: 10.1063/1.447334. DOI
Nosé S.. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Hoover W. G.. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Parrinello M., Rahman A.. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M.. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Loncharich R. J., Brooks B. R., Pastor R. W.. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers. 1992;32:523–535. doi: 10.1002/bip.360320508. PubMed DOI
Åqvist J., Wennerström P., Nervall M., Bjelic S., Brandsdal B. O.. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 2004;384:288–294. doi: 10.1016/j.cplett.2003.12.039. DOI
Ryckaert J.-P., Ciccotti G., Berendsen H. J.. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G.. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Gowers R. J., Linke M., Barnoud J., Reddy T. J. E., Melo M. N., Seyler S. L., Domański J., Dotson D. L., Buchoux S., Kenney I. M.. et al. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. Proc. Python Sci. Conf. 2016:98–105. doi: 10.25080/Majora-629e541a-00e. DOI
Michaud-Agrawal N., Denning E. J., Woolf T. B., Beckstein O.. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC
Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A.. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI
Timko J., Bucher D., Kuyucak S.. Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 2010;132:114510. doi: 10.1063/1.3360310. PubMed DOI