NMR-Derived Salt Bridges in Insulin Analogue: Resolving Artifactual Overbinding in Molecular Dynamics via Charge Scaling

. 2025 Jul 24 ; 16 (29) : 7436-7442. [epub] 20250715

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40665488

Salt bridges are ionic interactions that are of great importance in protein recognition. However, their structural description using X-ray crystallography or NMR may be inconclusive. Classical molecular dynamics (MD) used for the interpretation neglects electronic polarization, which results in artifactual overbinding. Here, we resolve the problem via charge scaling, which accounts for electronic polarization in a mean-field way. We study three salt bridges in insulin analogue. New NMR ensembles are generated via NOE-restrained MD using ff19SB and CHARMM36m force fields and the scaled-charge prosECCo75. Tens of μs of unrestrained MD show in a statistically converged manner that ff19SB induces a non-native salt bridge. This behavior is quantified via umbrella sampling of salt bridge dissociation, which indicates a rather high strength of up to 4 and 5 kcal mol-1 for CHARMM36m and ff19SB, respectively. In contrast, prosECCo75 gives a biologically reasonable dissociation barrier of 1 kcal mol-1. Our results indicate that a physically justified description of charge-charge interactions within a nonpolarizable MD framework reliably describes aqueous biomolecular systems.

Zobrazit více v PubMed

Simonson T., Archontis G., Karplus M.. Free energy simulations come of age: Protein-ligand recognition. Acc. Chem. Res. 2002;35:430–437. doi: 10.1021/ar010030m. PubMed DOI

Sheinerman F. B, Norel R., Honig B.. Electrostatic aspects of protein-protein interactions. Curr. Opin. Struct. Biol. 2000;10:153–159. doi: 10.1016/S0959-440X(00)00065-8. PubMed DOI

Quan X., Liu J., Zhou J.. Multiscale modeling and simulations of protein adsorption: progresses and perspectives. Curr. Opin. Colloid Interface Sci. 2019;41:74–85. doi: 10.1016/j.cocis.2018.12.004. DOI

Leontyev I. V., Stuchebrukhov A. A.. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009;130:085102. doi: 10.1063/1.3060164. PubMed DOI PMC

Leontyev I. V., Stuchebrukhov A. A.. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011;13:2613–2626. doi: 10.1039/c0cp01971b. PubMed DOI

Kirby B. J., Jungwirth P.. Charge scaling manifesto: A way of reconciling the inherently macroscopic and microscopic natures of molecular simulations. J. Phys. Chem. Lett. 2019;10:7531–7536. doi: 10.1021/acs.jpclett.9b02652. PubMed DOI

Kohagen M., Lepšík M., Jungwirth P.. Calcium binding to calmodulin by molecular dynamics with effective polarization. J. Phys. Chem. Lett. 2014;5:3964–3969. doi: 10.1021/jz502099g. PubMed DOI

Kohagen M., Mason P. E., Jungwirth P.. Accounting for electronic polarization effects in aqueous sodium chloride via molecular dynamics aided by neutron scattering. J. Phys. Chem. B. 2016;120:1454–1460. doi: 10.1021/acs.jpcb.5b05221. PubMed DOI

Pluharova E., Fischer H. E., Mason P. E., Jungwirth P.. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 2014;112:1230–1240. doi: 10.1080/00268976.2013.875231. DOI

Kohagen M., Mason P. E., Jungwirth P.. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B. 2014;118:7902–7909. doi: 10.1021/jp5005693. PubMed DOI

Nencini R., Ollila O. H. S.. Charged small molecule binding to membranes in MD simulations evaluated against NMR experiments. J. Phys. Chem. B. 2022;126:6955–6963. doi: 10.1021/acs.jpcb.2c05024. PubMed DOI PMC

Biriukov D., Wang H.-W., Rampal N., Tempra C., Kula P., Neuefeind J. C., Stack A. G., Předota M.. The “good,” the “bad,” and the “hidden” in neutron scattering and molecular dynamics of ionic aqueous solutions. J. Chem. Phys. 2022;156:194505. doi: 10.1063/5.0093643. PubMed DOI

Zeron I. M., Abascal J. L. F., Vega C.. A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl–, and SO4 2– in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. J. Chem. Phys. 2019;151:134504. doi: 10.1063/1.5121392. PubMed DOI

Blazquez S., Conde M. M., Abascal J. L. F., Vega C.. The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F–, Br–, I–, Rb+, and Cs+ . J. Chem. Phys. 2022;156:044505. doi: 10.1063/5.0077716. PubMed DOI

Do T. M., Matubayasi N., Horinek D.. Development of a force field for ATP - how charge scaling controls self-association. Phys. Chem. Chem. Phys. 2025;27:6325–6333. doi: 10.1039/D4CP04270K. PubMed DOI

Le Nguyen N. L., Tichacek O., Jungwirth P., Martinez-Seara H., Mason P. E., Duboué-Dijon E.. Ion pairing in aqueous tetramethylammonium-acetate solutions by neutron scattering and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2025;27:2553–2562. doi: 10.1039/D4CP04312J. PubMed DOI

Tolmachev D. A., Boyko O. S., Lukasheva N. V., Martinez-Seara H., Karttunen M.. Overbinding and qualitative and quantitative changes caused by simple Na+ and K+ ions in polyelectrolyte simulations: Comparison of force fields with and without NBFIX and ECC corrections. J. Chem. Theory Comput. 2020;16:677–687. doi: 10.1021/acs.jctc.9b00813. PubMed DOI

Duboué-Dijon E., Delcroix P., Martinez-Seara H., Hladílková J., Coufal P., Křízek T., Jungwirth P.. Binding of divalent cations to insulin: Capillary electrophoresis and molecular simulations. J. Phys. Chem. B. 2018;122:5640–5648. doi: 10.1021/acs.jpcb.7b12097. PubMed DOI

Xue L., Yan N., Song C.. Deciphering Ca2+ permeation and valence selectivity in CaV 1: Molecular dynamics simulations reveal the three-ion knock-on mechanism. Proc. Natl. Acad. Sci. U.S.A. 2025;122:e2424694122. doi: 10.1073/pnas.2424694122. PubMed DOI PMC

Hui C., de Vries R., Kopec W., de Groot B. L.. Effective polarization in potassium channel simulations: Ion conductance, occupancy, voltage response, and selectivity. Proc. Natl. Acad. Sci. U.S.A. 2025;122:e2423866122. doi: 10.1073/pnas.2423866122. PubMed DOI PMC

Melcr J., Martinez-Seara H., Nencini R., Kolafa J., Jungwirth P., Ollila O. H. S.. Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization. J. Phys. Chem. B. 2018;122:4546–4557. doi: 10.1021/acs.jpcb.7b12510. PubMed DOI

Melcr J., Ferreira T. M., Jungwirth P., Ollila O. H. S.. Improved cation binding to lipid bilayers with negatively charged POPS by effective inclusion of electronic polarization. J. Chem. Theory Comput. 2020;16:738–748. doi: 10.1021/acs.jctc.9b00824. PubMed DOI

Bacle A., Buslaev P., Garcia-Fandino R., Favela-Rosales F., Mendes Ferreira T., Fuchs P. F. J., Gushchin I., Javanainen M., Kiirikki A. M., Madsen J. J.. et al. Inverse conformational selection in lipid-protein binding. J. Am. Chem. Soc. 2021;143:13701–13709. doi: 10.1021/jacs.1c05549. PubMed DOI

Biriukov D., Kroutil O., Kabeláč M., Ridley M. K., Machesky M. L., Předota M.. Oxalic acid adsorption on rutile: Molecular dynamics and ab initio calculations. Langmuir. 2019;35:7617–7630. doi: 10.1021/acs.langmuir.8b03984. PubMed DOI

Marchioro A., Bischoff M., Lütgebaucks C., Biriukov D., Předota M., Roke S.. Surface characterization of colloidal silica nanoparticles by second harmonic scattering: Quantifying the surface potential and interfacial water order. J. Phys. Chem. C. 2019;123:20393–20404. doi: 10.1021/acs.jpcc.9b05482. PubMed DOI PMC

Biriukov D., Kroutil O., Předota M.. Modeling of solid-liquid interfaces using scaled charges: rutile (110) surfaces. Phys. Chem. Chem. Phys. 2018;20:23954–23966. doi: 10.1039/C8CP04535F. PubMed DOI

Biriukov D., Fibich P., Předota M.. Zeta potential determination from molecular simulations. J. Phys. Chem. C. 2020;124:3159–3170. doi: 10.1021/acs.jpcc.9b11371. DOI

Phan L. X., Chamorro V. C., Martinez-Seara H., Crain J., Sansom M. S.P., Tucker S. J.. Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin. Biophys. J. 2023;122:1548–1556. doi: 10.1016/j.bpj.2023.03.026. PubMed DOI PMC

Lepšík M., Sommer R., Kuhaudomlarp S., Lelimousin M., Paci E., Varrot A., Titz A., Imberty A.. Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study. Eur. J. Med. Chem. 2019;177:212–220. doi: 10.1016/j.ejmech.2019.05.049. PubMed DOI

Wilson C. J., Gapsys V., de Groot B. L.. Improving pKa predictions with reparameterized force fields and free energy calculations. J. Chem. Theory Comput. 2025;21:4095–4106. doi: 10.1021/acs.jctc.5c00031. PubMed DOI PMC

Schröder C.. Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys. Chem. Chem. Phys. 2012;14:3089–3102. doi: 10.1039/c2cp23329k. PubMed DOI PMC

Pal T., Vogel M.. On the relevance of electrostatic interactions for the structural relaxation of ionic liquids: A molecular dynamics simulation study. J. Chem. Phys. 2019;150:124501. doi: 10.1063/1.5085508. PubMed DOI

Chaumont A., Schurhammer R., Wipff G.. Aqueous interfaces with hydrophobic room-temperature ionic liquids: A molecular dynamics study. J. Phys. Chem. B. 2005;109:18964–18973. doi: 10.1021/jp052854h. PubMed DOI

Kumar S., Nussinov R.. Close-Range electrostatic interactions in proteins. ChemBioChem. 2002;3:604–617. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X. PubMed DOI

Hendsch Z. S., Tidor B.. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994;3:211–226. doi: 10.1002/pro.5560030206. PubMed DOI PMC

Sindelar C. V., Hendsch Z. S., Tidor B.. Effects of salt bridges on protein structure and design. Protein Sci. 1998;7:1898–1914. doi: 10.1002/pro.5560070906. PubMed DOI PMC

Donald J. E., Kulp D. W., DeGrado W. F.. Salt bridges: geometrically specific, designable interactions. Proteins. 2011;79:898–915. doi: 10.1002/prot.22927. PubMed DOI PMC

Anderson D. E., Becktel W. J., Dahlquist F. W.. pH-Induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochem. 1990;29:2403–2408. doi: 10.1021/bi00461a025. PubMed DOI

Bush J., Makhatadze G. I.. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges. Proteins. 2011;79:2027–2032. doi: 10.1002/prot.23067. PubMed DOI

Lyu P. C., Gans P. J., Kallenbach N. R.. Energetic contribution of solvent-exposed ion pairs to alpha-helix structure. J. Mol. Biol. 1992;223:343–350. doi: 10.1016/0022-2836(92)90735-3. PubMed DOI

Sali D., Bycroft M., Fersht A. R.. Surface electrostatic interactions contribute little of stability of barnase. J. Mol. Biol. 1991;220:779–788. doi: 10.1016/0022-2836(91)90117-O. PubMed DOI

Serrano L., Horovitz A., Avron B., Bycroft M., Fersht A. R.. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochem. 1990;29:9343–9352. doi: 10.1021/bi00492a006. PubMed DOI

Pluhařová E., Marsalek O., Schmidt B., Jungwirth P.. Peptide salt bridge stability: from gas phase via microhydration to bulk water simulations. J. Chem. Phys. 2012;137:185101. doi: 10.1063/1.4765052. PubMed DOI

Debiec K. T., Gronenborn A. M., Chong L. T.. Evaluating the strength of salt bridges: A comparison of current biomolecular force fields. J. Phys. Chem. B. 2014;118:6561–6569. doi: 10.1021/jp500958r. PubMed DOI PMC

Lawrence M. C.. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 2021;52:101255. doi: 10.1016/j.molmet.2021.101255. PubMed DOI PMC

Žáková L., Kletvíková E., Veverka V., Lepšík M., Watson C. J., Turkenburg J. P., Jiráček J., Brzozowski A. M.. Structural integrity of the B24 site in human insulin is important for hormone functionality. J. Biol. Chem. 2013;288:10230–10240. doi: 10.1074/jbc.M112.448050. PubMed DOI PMC

Tian C., Kasavajhala K., Belfon K. A. A., Raguette L., Huang H., Migues A. N., Bickel J., Wang Y., Pincay J., Wu Q.. et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI

Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., Vorobyov I., MacKerell A. D. J., Pastor R. W.. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Nencini R., Tempra C., Biriukov D., Riopedre-Fernandez M., Cruces Chamorro V., Polak J., Mason P. E., Ondo D., Heyda J., Ollila O. H. S.. et al. Effective inclusion of electronic polarization improves the description of electrostatic interactions: The prosECCo75 biomolecular force field. J. Chem. Theory Comput. 2024;20:7546–7559. doi: 10.1021/acs.jctc.4c00743. PubMed DOI PMC

Lieblich S. A., Fang K. Y., Cahn J. K. B., Rawson J., LeBon J., Ku H. T., Tirrell D. A.. 4S-Hydroxylation of insulin at ProB28 accelerates hexamer dissociation and delays fibrillation. J. Am. Chem. Soc. 2017;139:8384–8387. doi: 10.1021/jacs.7b00794. PubMed DOI PMC

DeLano W. L.. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40:82–92.

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

MacKerell A. D. J., Bashford D., Bellott M., Dunbrack R. L. J., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S.. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI

Berendsen H. J. C., Grigera J. R., Straatsma T. P.. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Mason P. E., Jungwirth P., Duboué-Dijon E.. Quantifying the strength of a salt Bridge by neutron scattering and molecular dynamics. J. Phys. Chem. Lett. 2019;10:3254–3259. doi: 10.1021/acs.jpclett.9b01309. PubMed DOI

Yurenko Y. P., Muždalo A., Černeková M., Pecina A., Řezáč J., Fanfrlík J., Žáková L., Jiráček J., Lepšík M.. Multiscale computational protocols for accurate residue interactions at the flexible insulin-receptor interface. J. Chem. Inf. Model. 2025;65:5690–5705. doi: 10.1021/acs.jcim.5c00772. PubMed DOI PMC

Gorai B., Vashisth H.. Progress in simulation studies of insulin structure and function. Front. Endocrinol. 2022;13:908724. doi: 10.3389/fendo.2022.908724. PubMed DOI PMC

Gorai B., Vashisth H.. Structural models of viral insulin-like peptides and their analogs. Proteins. 2023;91:62–73. doi: 10.1002/prot.26410. PubMed DOI PMC

Mendes de Oliveira D., Zukowski S. R., Palivec V., Hénin J., Martinez-Seara H., Ben-Amotz D., Jungwirth P., Duboué-Dijon E.. Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy. Phys. Chem. Chem. Phys. 2020;22:24014–24027. doi: 10.1039/D0CP02987D. PubMed DOI

Cruces Chamorro V., Jungwirth P., Martinez-Seara H.. Building water models compatible with charge scaling molecular dynamics. J. Phys. Chem. Lett. 2024;15:2922–2928. doi: 10.1021/acs.jpclett.4c00344. PubMed DOI PMC

Smith G. D., Pangborn W. A., Blessing R. H.. The structure of T6 human insulin at 1.0 Åresolution. Acta Crystallogr. D. 2003;59:474–482. doi: 10.1107/S0907444902023685. PubMed DOI

Sakabe, N. ; Sakabe, K. ; Sasaki, K. ; Murayoshi, M. . 0.92A structure of 2Zn human insulin at 100K. 2013; Protein Data Bank: 3W7Y.

Lisgarten D. R., Palmer R. A., Lobley C. M. C., Naylor C. E., Chowdhry B. Z., Al-Kurdi Z. I., Badwan A. A., Howlin B. J., Gibbons N. C. J., Saldanha J. W.. et al. Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100K. Chem. Cent. J. 2017;11:73. doi: 10.1186/s13065-017-0296-y. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K.. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Jo S., Kim T., Iyer V. G., Im W.. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Case, D. A. ; Belfon, K. ; Ben-Shalom, I. Y. ; Brozell, S. R. ; Cerutti, D. S. ; Cheatham, T. E., III ; Cruzeiro, V. W. D. ; Darden, T. A. ; Duke, R. E. ; Giambasu, G. . et al. AMBER 20; University of California: San Francisco, CA, 2020.

Nosé S.. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81:511–519. doi: 10.1063/1.447334. DOI

Nosé S.. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Hoover W. G.. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI

Parrinello M., Rahman A.. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M.. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Loncharich R. J., Brooks B. R., Pastor R. W.. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers. 1992;32:523–535. doi: 10.1002/bip.360320508. PubMed DOI

Åqvist J., Wennerström P., Nervall M., Bjelic S., Brandsdal B. O.. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 2004;384:288–294. doi: 10.1016/j.cplett.2003.12.039. DOI

Ryckaert J.-P., Ciccotti G., Berendsen H. J.. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G.. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Gowers R. J., Linke M., Barnoud J., Reddy T. J. E., Melo M. N., Seyler S. L., Domański J., Dotson D. L., Buchoux S., Kenney I. M.. et al. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. Proc. Python Sci. Conf. 2016:98–105. doi: 10.25080/Majora-629e541a-00e. DOI

Michaud-Agrawal N., Denning E. J., Woolf T. B., Beckstein O.. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC

Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A.. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI

Timko J., Bucher D., Kuyucak S.. Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 2010;132:114510. doi: 10.1063/1.3360310. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...