Multiscale Computational Protocols for Accurate Residue Interactions at the Flexible Insulin-Receptor Interface
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40377946
PubMed Central
PMC12152935
DOI
10.1021/acs.jcim.5c00772
Knihovny.cz E-zdroje
- MeSH
- inzulin metabolismus chemie MeSH
- konformace proteinů MeSH
- lidé MeSH
- receptor inzulinu * chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inzulin MeSH
- receptor inzulinu * MeSH
The quantitative characterization of residue contributions to protein-protein binding across extensive flexible interfaces poses a significant challenge for biophysical computations. It is attributable to the inherent imperfections in the experimental structures themselves, as well as to the lack of reliable computational tools for the evaluation of all types of noncovalent interactions. This study leverages recent advancements in semiempirical quantum-mechanical and implicit solvent approaches embodied in the PM6-D3H4S/COSMO2 method for the development of a hierarchical computational protocols encompassing molecular dynamics, fragmentation, and virtual glycine scan techniques for the investigation of flexible protein-protein interactions. As a model, the binding of insulin to its receptor is selected, a complex and dynamic process that has been extensively studied experimentally. The interaction energies calculated at the PM6-D3H4S/COSMO2 level in ten molecular dynamics snapshots did not correlate with molecular mechanics/generalized Born interaction energies because only the former method is able to describe nonadditive effects. This became evident by the examination of the energetics in small-model dimers featuring all the present types of noncovalent interactions with respect to DFT-D3 calculations. The virtual glycine scan has identified 15 hotspot residues on insulin and 15 on the insulin receptor, and their contributions have been quantified using PM6-D3H4S/COSMO2. The accuracy and credibility of the approach are further supported by the fact that all the insulin hotspots have previously been detected by biochemical and structural methods. The modular nature of the protocol has enabled the formulation of several variants, each tailored to specific accuracy and efficiency requirements. The developed computational strategy is firmly rooted in general biophysical chemistry and is thus offered as a general tool for the quantification of interactions across relevant flexible protein-protein interfaces.
Zobrazit více v PubMed
Siebenmorgen T., Zacharias M.. Computational Prediction of Protein–Protein Binding Affinities. WIREs Comput. Mol. Sci. 2020;10:e1448. doi: 10.1002/wcms.1448. PubMed DOI
de Ruiter A., Oostenbrink C.. Advances in the calculation of binding free energies. Curr. Opin. Struct. Biol. 2020;61:207–212. doi: 10.1016/j.sbi.2020.01.016. PubMed DOI
Decherchi S., Cavalli A.. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chem. Rev. 2020;120:12788. doi: 10.1021/acs.chemrev.0c00534. PubMed DOI PMC
Chen F., Liu H., Sun H., Pan P., Li Y., Li D., Hou T.. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys. Chem. Chem. Phys. 2016;18:22129. doi: 10.1039/C6CP03670H. PubMed DOI
Clark A. J., Negron C., Hauser K., Sun M., Wang L., Abel R., Friesner R. A.. Relative Binding Affinity Prediction of Charge-Changing Sequence Mutations with FEP in Protein–Protein Interfaces. J. Mol. Biol. 2019;431:1481. doi: 10.1016/j.jmb.2019.02.003. PubMed DOI PMC
Gumbart J. C., Roux B., Chipot C.. Standard Binding Free Energies from Computer Simulations: What Is the Best Strategy? J. Chem. Theory Comput. 2013;9:794–802. doi: 10.1021/ct3008099. PubMed DOI PMC
Christensen A. S., Kubař T., Cui Q., Elstner M.. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chem. Rev. 2016;116:5301. doi: 10.1021/acs.chemrev.5b00584. PubMed DOI PMC
Bryce, R. A. What Next for Quantum Mechanics in Structure-Based Drug Discovery? In Quantum Mechanics in Drug Discovery; Heifetz, A. , Ed.; 2020; p 339. PubMed
Ginex T., Vásquez J., Estarellas C., Luque F. J.. Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design. Curr. Opin. Struct. Biol. 2024;87:102870. doi: 10.1016/j.sbi.2024.102870. PubMed DOI
Manathunga M., Götz A. W., Merz K. M. Jr. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr. Opin. Struct. Biol. 2022;75:102417. doi: 10.1016/j.sbi.2022.102417. PubMed DOI
Řezáč J., Hobza P.. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016;116:5038. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI
Řezáč J., Hobza P.. Advanced Corrections of H-bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141. doi: 10.1021/ct200751e. PubMed DOI
Pecina A., Fanfrlík J., Lepšík M., Řezáč J.. SQM2.20: Semiempirical Quantum-Mechanical Scoring Function Yields DFT-Quality Protein-Ligand Binding Affinity Predictions in Minutes. Nat. Commun. 2024;15:1127. doi: 10.1038/s41467-024-45431-8. PubMed DOI PMC
Kříž K., Nováček M., Řezáč J.. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021;17:1548. doi: 10.1021/acs.jctc.0c01341. PubMed DOI
Kříž K., Fanfrlík J., Lepšík M.. Chalcogen Bonding in Protein-Ligand Complexes: PDB Survey and Quantum Mechanical Calculations. ChemPhysChem. 2018;19:2540. doi: 10.1002/cphc.201800409. PubMed DOI
Ryde U., Söderhjelm P.. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem. Rev. 2016;116:5520. doi: 10.1021/acs.chemrev.5b00630. PubMed DOI
Allen A. E. A., Lubbers N., Matin S., Smith J., Messerly R., Tretiak S., Barros K.. Learning together: Towards foundation models for machine learning interatomic potentials with meta-learning. npj Comput. Mater. 2024;10:154. doi: 10.1038/s41524-024-01339-x. DOI
Hofer T. S., de Visser S. P.. Editorial: Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems – Recent Developments and Advanced Applications. Front. Chem. 2018;6:357. doi: 10.3389/fchem.2018.00357. PubMed DOI PMC
Cui Q., Pal T., Xie L.. Biomolecular QM/MM Simulations: What Are Some of the “Burning Issues”? J. Phys. Chem. B. 2021;125(3):689. doi: 10.1021/acs.jpcb.0c09898. PubMed DOI PMC
Molani F., Cho A. E.. Accurate protein-ligand binding free energy estimation using QM/MM on multi-conformers predicted from classical mining minima. Commun. Chem. 2024;7:247. doi: 10.1038/s42004-024-01328-7. PubMed DOI PMC
Kříž K., Řezáč J.. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2019;59:229. doi: 10.1021/acs.jcim.8b00681. PubMed DOI
Kříž K., Řezáč J.. Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer-Aided Drug Design. J. Chem. Inf. Model. 2020;60:1453. doi: 10.1021/acs.jcim.9b01171. PubMed DOI
Nottoli M., Mikhalev A., Stamm B., Lipparini F.. Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. J. Phys. Chem. B. 2022;126(43):8827. doi: 10.1021/acs.jpcb.2c04579. PubMed DOI PMC
Li J., Park J., Mayer J. P., Webb K. J., Uchikawa E., Wu J., Li S., Zhang X., Stowell M. H. B., Choi E., Bai X.-c.. Synergistic Activation of the Insulin Receptor via Two Distinct Sites. Nat. Struct. Mol. Biol. 2022;29:357. doi: 10.1038/s41594-022-00750-6. PubMed DOI PMC
Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y.-C., Tsubokawa M., Mason A., Seeburg P. H., Grunfeld C., Rosen O. M., Ramachadran J.. Human Insulin Receptor and Its Relationship to the Tyrosine Kinase Family of Oncogenes. Nature. 1985;313:756. doi: 10.1038/313756a0. PubMed DOI
Choi E., Bai X.-c.. The Activation Mechanism of the Insulin Receptor: A Structural Perspective. Annu. Rev. Biochem. 2023;92:247. doi: 10.1146/annurev-biochem-052521-033250. PubMed DOI PMC
Scapin G., Dandey V. P., Zhang Z., Prosise W., Hruza A., Kelly T., Mayhood T., Strickland C., Potter C. S., Carragher B.. Structure of the Insulin Receptor–Insulin Complex by Single-Particle Cryo-EM Analysis. Nature. 2018;556:122. doi: 10.1038/nature26153. PubMed DOI PMC
Weis F., Menting J. G., Margetts M. B., Chan S. J., Xu Y., Tennagels N., Wohlfart P., Langer T., Müller C. W., Dreyer M. K., Lawrence M. C.. The Signaling Conformation of the Insulin Receptor Ectodomain. Nat. Commun. 2018;9:4420. doi: 10.1038/s41467-018-06826-6. PubMed DOI PMC
Gutmann T., Schäfer I., Poojari C., Brankatschk B., Vattulainen I., Strauss M., Coskun Ü.. Cryo-EM Structure of the Complete and Ligand-Saturated Insulin Receptor Ectodomain. J. Cell Biol. 2020;219:e201907210. doi: 10.1083/jcb.201907210. PubMed DOI PMC
Uchikawa E., Choi E., Shang G., Yu H., Bai X.-c.. Activation Mechanism of the Insulin Receptor Revealed by Cryo-EM Structure of the Fully Liganded Receptor–Ligand Complex. eLife. 2019;8:e48630. doi: 10.7554/eLife.48630. PubMed DOI PMC
The PyMOL Molecular Graphics System, Version 2.0; Schrödinger, LLC.
De Meyts P.. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. Bioessays. 2015;37:389. doi: 10.1002/bies.201400190. PubMed DOI
Fiser A., Do R. K. G., Sali A.. Modeling of loops in protein structures. Protein Science. 2000;9:1753–1773. doi: 10.1110/ps.9.9.1753. PubMed DOI PMC
Case, D. A. ; Betz, R. M. ; Cerutti, D. S. ; Cheatham, T. E., III ; Darden, T. A. ; Duke, R. E. ; Giese, T. J. ; Gohlke, H. ; Goetz, A. W. ; Homeyer, N. ; Izadi, S. ; Janowski, P. ; Kaus, J. ; Kovalenko, A. ; Lee, T. S. ; LeGrand, S. ; Li, P. ; Lin, C. ; Luchko, T. ; Luo, R. ; Madej, B. ; Mermelstein, D. ; Merz, K. M. ; Monard, G. ; Nguyen, H. ; Nguyen, H. T. ; Omelyan, I. ; Onufriev, A. ; Roe, D. R. ; Roitberg, A. ; Sagui, C. ; Simmerling, C. L. ; Botello-Smith, W. M. ; Swails, J. ; Walker, R. C. ; Wang, J. ; Wolf, R. M. ; Wu, X. ; Xiao, L. ; Kollman, P. A. . AMBER 2016; University of California, San Francisco, 2016.
Van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J.. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005;26:1701. doi: 10.1002/jcc.20291. PubMed DOI
Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C.. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Mongan J., Simmerling C., McCammon J. A., Case D. A., Onufriev A.. Generalized Born Model with a Simple, Robust Molecular Volume Correction. J. Chem. Theory Comput. 2007;3:156. doi: 10.1021/ct600085e. PubMed DOI PMC
Izadi S., Onufriev A. V.. Accuracy Limit of Rigid 3-Point Water Models. J. Chem. Phys. 2016;145:074501. doi: 10.1063/1.4960175. PubMed DOI PMC
Yurenko, Y. P. ; Lepsik, M. . Mendeley Data, V 2; 2025, 10.17632/6twk7snmyh.2. DOI
Bussi G., Donadio D., Parrinello M.. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R.. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984;81:3684. doi: 10.1063/1.448118. DOI
Stewart, J. J. P , MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO.
Řezáč, J. Cuby – ruby framework for computational chemistry, version 4, http://cuby4.molecular.cz. PubMed
Řezáč J.. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016;37:1230. doi: 10.1002/jcc.24312. PubMed DOI
Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P.. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003;24:1999. doi: 10.1002/jcc.10349. PubMed DOI
Onufriev A. V., Bashford D., Case D. A.. Modification of the Generalized Born Model Suitable for Macromolecules. J. Phys. Chem. B. 2000;104:3712. doi: 10.1021/jp994072s. DOI
Klamt A., Schüümann G.. COSMO: a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. J. Chem. Soc., Perkin Trans. 1993;2:799. doi: 10.1039/P29930000799. DOI
Becke A. D.. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R. G.. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37:785. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg S.. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/b508541a. PubMed DOI
TURBOMOLE V7.2 (2017), a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available at http://www.turbomole.com.
Honda D. E., Lopes Martins J. B., Ventura M. M., Eyrilmez S. M., Lepšík M., Hobza P., Pecina A., de Freitas S. M.. Interface Interactions of the Bowman-Birk Inhibitor BTCI in a Ternary Complex with Trypsin and Chymotrypsin Evaluated by Semiempirical Quantum Mechanical Calculations. Eur. J. Org. Chem. 2018;2018:5203. doi: 10.1002/ejoc.201800754. DOI
Lawrence M. C.. Understanding Insulin and its Receptor from their Three-Dimensional Structures. Mol. Metab. 2021;52:101255. doi: 10.1016/j.molmet.2021.101255. PubMed DOI PMC
Kertisová A., Žáková L., Macháčková K., Marek A., Šácha P., Pompach P., Jiráček J., Selicharová I.. Insulin Receptor Arg717 and IGF-1 Receptor Arg704 Play a Key Role in Ligand Binding and in Receptor Activation. Open Biol. 2023;13:230142. doi: 10.1098/rsob.230142. PubMed DOI PMC
Nielsen J., Brandt J., Boesen T., Hummelshøj T., Slaaby R., Schuckelbier G., Nissen P.. Structural Investigations of Full-Length Insulin Receptor Dynamics and Signalling. J. Mol. Biol. 2022;434:167458. doi: 10.1016/j.jmb.2022.167458. PubMed DOI
Casañal A., Shakeel S., Passmore L. A.. Interpretation of Medium Resolution cryo-EM Maps of Multi-Protein Complexes. Curr. Opin. Struct. Biol. 2019;58:166. doi: 10.1016/j.sbi.2019.06.009. PubMed DOI PMC
Neijenhuis T., van Keulen S. C., Bonvin A. M. J. J.. Interface Refinement of Low- to Medium-Resolution Cryo-EM Complexes using HADDOCK2.4. Structure. 2022;30:476. doi: 10.1016/j.str.2022.02.001. PubMed DOI
Lindahl E., Friedman R.. Exploring the Impact of Protein Chain Selection in Binding Energy Calculations with DFT. ChemPhysChem. 2024;25:e202400119. doi: 10.1002/cphc.202400119. PubMed DOI PMC
Iwaoka M., Isozumi N.. Hypervalent Nonbonded Interactions of a Divalent Sulfur Atom. Implications in Protein Architectures and the Functions. Molecules. 2012;17:7266. doi: 10.3390/molecules17067266. PubMed DOI PMC
Bauzá A., Mooibroek T. D., Frontera A.. The bright future of unconventional σ/π-hole interactions. ChemPhysChem. 2015;16:2496. doi: 10.1002/cphc.201500314. PubMed DOI
Politzer P., Murray J. S., Clark T., Resnati G.. The σ-hole revisited. Phys. Chem. Chem. Phys. 2017;19:32166. doi: 10.1039/C7CP06793C. PubMed DOI
Yan X. C., Robertson M. J., Tirado-Rives J., Jorgensen W. L.. Improved Description of Sulfur Charge Anisotropy in OPLS Force Fields: Model Development and Parameterization. J. Phys. Chem. B. 2017;121:6626. doi: 10.1021/acs.jpcb.7b04233. PubMed DOI PMC
Kolář M. H., Hobza P.. Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. Chem. Rev. 2016;116:5155. doi: 10.1021/acs.chemrev.5b00560. PubMed DOI
Chen F., Liu H., Sun H., Pan P., Li Y., Li D., Hou T.. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys. Chem. Chem. Phys. 2016;18(32):22129. doi: 10.1039/C6CP03670H. PubMed DOI
Sheng Y.-j., Yin Y.-w., Ma Y.-q., Ding H.-m.. Improving the performance of MM/PBSA in protein–protein interactions via the screening electrostatic energy. J. Chem. Inf. Model. 2021;61(5):2454. doi: 10.1021/acs.jcim.1c00410. PubMed DOI
Pfeiffenberger E., Bates P. A.. Refinement of protein-protein complexes in contact map space with metadynamics simulations. Proteins. 2019;87:12. doi: 10.1002/prot.25612. PubMed DOI PMC
Rahman S., Wineman-Fisher V., Al-Hamdani Y., Tkatchenko A., Varma S.. Predictive QM/MM modeling of modulations in protein–protein binding by lysine methylation. J. Mol. Biol. 2021;433:166745. doi: 10.1016/j.jmb.2020.166745. PubMed DOI PMC
Tang T., Zhang X., Liu Y., Peng H., Zheng B., Yin Y., Zeng X.. Machine learning on protein–protein interaction prediction: models, challenges and trends. Brief. Bioinform. 2023;24:bbad076. doi: 10.1093/bib/bbad076. PubMed DOI
Casadio R., Martelli P. L., Savojardo C.. Machine learning solutions for predicting protein–protein interactions. WIREs Comput. Mol. Sci. 2022;12:e1618. doi: 10.1002/wcms.1618. DOI
Xiong X., Blakely A., Kim J. H., Menting J. G., Schäfer I. B., Schubert H. L., Agawal R.. et al. Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nature Chem. Biol. 2022;18:511. doi: 10.1038/s41589-022-00981-0. PubMed DOI PMC
Lenz V., Gattner H. G., Sievert D., Wollmer A., Engels M., Hoker M.. Semisynthetic des-(B27-B30)-insulins with modified B26-tyrosine. Biol. Chem. 1991;372:495. doi: 10.1515/bchm3.1991.372.2.495. PubMed DOI
Žáková L., Barth T., Jiráček J., Barthová J., Zorad Š.. Shortened insulin analogues: marked changes in biological activity resulting from replacement of TyrB26 and N-methylation of peptide bonds in the C-terminus of the B-chain. Biochemistry. 2004;43:2323. doi: 10.1021/bi036001w. PubMed DOI
Žáková L., Kazdová L., Hančlová I., Protivínská E., Šanda M., Buděšínský M., Jiráček J.. Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry. 2008;47:5858. doi: 10.1021/bi702086w. PubMed DOI