• This record comes from PubMed

SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein-ligand binding affinity predictions in minutes

. 2024 Feb 06 ; 15 (1) : 1127. [epub] 20240206

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 38321025
PubMed Central PMC10847445
DOI 10.1038/s41467-024-45431-8
PII: 10.1038/s41467-024-45431-8
Knihovny.cz E-resources

Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.

See more in PubMed

Amaro, R. E. & Mulholland, A. J. Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures. Nat Rev Chem2, 0148 (2018). PubMed PMC

Ruiz-Carmona S, et al. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem. 2017;9:201–206. doi: 10.1038/nchem.2660. PubMed DOI

Mobley DL, Gilson MK. Predicting binding free energies: frontiers and benchmarks. Annu. Rev. Biophys. 2017;46:531–558. doi: 10.1146/annurev-biophys-070816-033654. PubMed DOI PMC

Cavasotto CN. Binding free energy calculation using quantum mechanics aimed for drug lead optimization. Methods Mol. Biol. 2020;2114:257–268. doi: 10.1007/978-1-0716-0282-9_16. PubMed DOI

Manathunga M, Gotz AW, Merz KM., Jr Computer-aided drug design, quantum-mechanical methods for biological problems. Curr. Opin. Struct. Biol. 2022;75:102417. doi: 10.1016/j.sbi.2022.102417. PubMed DOI

Ryde U, Soderhjelm P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem. Rev. 2016;116:5520–5566. doi: 10.1021/acs.chemrev.5b00630. PubMed DOI

Lepšík M, et al. The semiempirical quantum mechanical scoring function for in silico drug design. ChemPlusChem. 2013;78:921–931. doi: 10.1002/cplu.201300199. PubMed DOI

Pecina A, et al. SQM/COSMO scoring function: reliable quantum-mechanical tool for sampling and ranking in structure-based drug design. ChemPlusChem. 2020;85:2361. doi: 10.1002/cplu.202000627. PubMed DOI

Řezáč J, Hobza P. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI

Řezáč J, Hobza P. A halogen-bonding correction for the semiempirical PM6 method. Chem. Phys. Lett. 2011;506:286–289. doi: 10.1016/j.cplett.2011.03.009. DOI

Dobeš P, Řezáč J, Fanfrlík J, Otyepka M, Hobza P. Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails. J. Phys. Chem. B. 2011;115:8581–8589. doi: 10.1021/jp202149z. PubMed DOI

Stewart JJP. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 1996;58:133–146. doi: 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z. DOI

Kramer C, Kalliokoski T, Gedeck P, Vulpetti A. The experimental uncertainty of heterogeneous public K(i) data. J. Med. Chem. 2012;55:5165–5173. doi: 10.1021/jm300131x. PubMed DOI

Řezáč, J. Data set of protein-ligand complexes with reliable experimental structures and affinities. Zenodo, 10.5281/zenodo.8182922 (2023).

Stewart JJ. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007;13:1173–1213. doi: 10.1007/s00894-007-0233-4. PubMed DOI PMC

Řezáč J. Non-covalent interactions atlas benchmark data sets: hydrogen bonding. J. Chem. Theory Comput. 2020;16:2355–2368. doi: 10.1021/acs.jctc.9b01265. PubMed DOI

Kříž K, Řezáč J. Non-covalent interactions atlas benchmark data sets 4: sigma-hole interactions. Phys. Chem. Chem. Phys. 2022;24:14794–14804. doi: 10.1039/D2CP01600A. PubMed DOI

Kříž K, Nováček M, Řezáč J. Non-covalent interactions atlas benchmark data sets 3: repulsive contacts. J. Chem. Theory Comput. 2021;17:1548–1561. doi: 10.1021/acs.jctc.0c01341. PubMed DOI

Kříž K, Řezáč J. Benchmarking of semiempirical quantum-mechanical methods on systems relevant to computer-aided drug design. J. Chem. Inf. Model. 2020;60:1453–1460. doi: 10.1021/acs.jcim.9b01171. PubMed DOI

MOPAC2016 (Stewart Computational Chemistry, Colorado Springs, CO, USA, 2016).

Kříž K, Řezáč J. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2019;59:229–235. doi: 10.1021/acs.jcim.8b00681. PubMed DOI

Chan L, Morris GM, Hutchison GR. Understanding conformational entropy in small molecules. J. Chem. Theory Comput. 2021;17:2099–2106. doi: 10.1021/acs.jctc.0c01213. PubMed DOI

Su M, et al. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019;59:895–913. doi: 10.1021/acs.jcim.8b00545. PubMed DOI

Tian C, et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A. Generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput. 2007;3:156–169. doi: 10.1021/ct600085e. PubMed DOI PMC

Case, D. A. AMBER 2020. (University of California, San Francisco, USA, 2020).

O’Boyle NM, et al. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI

Stewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013;19:1–32. doi: 10.1007/s00894-012-1667-x. PubMed DOI PMC

Hostas J, Rezác J, Hobza P. On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions. Chem. Phys. Lett. 2013;568:161–166. doi: 10.1016/j.cplett.2013.02.069. DOI

Kelly CP, Cramer CJ, Truhlar DG. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B. 2006;110:16066–16081. doi: 10.1021/jp063552y. PubMed DOI

Mardirossian N, Head-Gordon M. omegaB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 2014;16:9904–9924,. doi: 10.1039/c3cp54374a. PubMed DOI

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Řezáč J. Non-Covalent Interactions Atlas benchmark data sets 5: London dispersion in an extended chemical space. Phys. Chem. Chem. Phys. 2022;24:14780–14793. doi: 10.1039/D2CP01602H. PubMed DOI

Hostaš J, Řezáč J. Accurate DFT-D3 calculations in a small basis set. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI

Neese, F. Software update: The ORCA program system-Version5.0. Wires Comput Mol Sci12, 1606 (2022).

Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI

Friesner RA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI

Korb O, Stutzle T, Exner TE. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI

Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput Aided Mol. Des. 2002;16:11–26. doi: 10.1023/A:1016357811882. PubMed DOI

Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997;267:727–748. doi: 10.1006/jmbi.1996.0897. PubMed DOI

Morris GM, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC

Quiroga R, Villarreal MA. Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One. 2016;11:e0155183. doi: 10.1371/journal.pone.0155183. PubMed DOI PMC

Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model. 2014;54:2371–2379. doi: 10.1021/ci500209e. PubMed DOI PMC

Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 2013;53:1893–1904. doi: 10.1021/ci300604z. PubMed DOI PMC

Wang C, Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput Chem. 2017;38:169–177. doi: 10.1002/jcc.24667. PubMed DOI PMC

Durrant JD, McCammon JA. BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph Model. 2011;29:888–893. doi: 10.1016/j.jmgm.2011.01.004. PubMed DOI PMC

Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26:1169–1175. doi: 10.1093/bioinformatics/btq112. PubMed DOI PMC

Ballester PJ, Schreyer A, Blundell TL. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J. Chem. Inf. Model. 2014;54:944–955. doi: 10.1021/ci500091r. PubMed DOI PMC

Li H, Leung KS, Wong MH, Ballester PJ. Improving AutoDock vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol. Inf. 2015;34:115–126. doi: 10.1002/minf.201400132. PubMed DOI

Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics. 2018;34:3666–3674. doi: 10.1093/bioinformatics/bty374. PubMed DOI PMC

Liu Z, et al. Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res. 2017;50:302–309. doi: 10.1021/acs.accounts.6b00491. PubMed DOI

Hartshorn MJ, et al. Diverse, high-quality test set for the validation of protein-ligand docking performance. J. Med. Chem. 2007;50:726–741. doi: 10.1021/jm061277y. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...