• This record comes from PubMed

Comparative Analysis of Quantum-Mechanical and Standard Single-Structure Protein-Ligand Scoring Functions with MD-Based Free Energy Calculations

. 2025 Aug 11 ; 65 (15) : 8127-8136. [epub] 20250719

Language English Country United States Media print-electronic

Document type Journal Article, Comparative Study

Single-structure scoring functions have been considered inferior to expensive ensemble free energy methods in predicting protein-ligand affinities. We are revisiting this dogma with the recently developed semiempirical quantum-mechanical (SQM)-based scoring function, SQM2.20, comparing its performance to the standard scoring functions on one hand and state-of-the-art molecular dynamics (MD)-based free-energy methods on the other hand. The comparison is conducted on a well-established Wang data set comprising eight protein targets with 200 ligands. The initial low correlation of SQM2.20 scores with the experimental binding affinities of R2 = 0.21 was improved to R2 = 0.47 by a systematic refinement of the input structures and omission of the ligand deformation energy. Consequently, SQM2.20 representing accurate single-structure scoring functions, exhibited an average performance comparable to that of MD-based methods (R2 = 0.52) and surpassed the performance of standard scoring functions (R2 = 0.26). The per-target analysis highlighted the pivotal role of high-quality input structures on the outcomes of single-structure methods. In the instances where such structures are available, SQM2.20 scoring has been shown to rival or even exceed MD-based methods in predicting protein-ligand binding affinities, while exhibiting significantly reduced computation time.

See more in PubMed

Sabe V. T., Ntombela T., Jhamba L. A., Maguire G. E. M., Govender T., Naicker T., Kruger H. G.. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021;224:113705. doi: 10.1016/j.ejmech.2021.113705. PubMed DOI

Kramer C., Chodera J., Damm-Ganamet K., Gilson M., Günther J., Lessel U., Lewis R., Mobley D., Nittinger E., Pecina A., Schapira M., Walters W. P.. The Need for continuing blinded Pose- and Activity Prediction Benchmarks. J. Chem. Inf. Model. 2025;65:2180–2190. doi: 10.1021/acs.jcim.4c02296. PubMed DOI

Wang L., Wu Y., Deng Y., Kim B., Pierce L., Krilov G., Lupyan D., Robinson S., Dahlgren M. K., Greenwood J., Romero D. L., Masse C., Knight J. L., Steinbrecher T., Beuming T., Damm W., Harder E., Sherman W., Brewer M., Wester R., Murcko M., Frye L., Farid R., Lin T., Mobley D. L., Jorgensen W. L., Berne B. J., Friesner R. A., Abel R.. Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. J. Am. Chem. Soc. 2015;137:2695–2703. doi: 10.1021/ja512751q. PubMed DOI

Ross G. A., Lu C., Scarabelli G., Albanese S. K., Houang E., Abel R., Harder E. D., Wang L.. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations. Commun. Chem. 2023;6:222. doi: 10.1038/s42004-023-01019-9. PubMed DOI PMC

Kuhn M., Firth-Clark S., Tosco P., Mey A. S. J. S., Mackey M., Michel J.. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J. Chem. Inf. Model. 2020;60:3120–3130. doi: 10.1021/acs.jcim.0c00165. PubMed DOI

Tsai H.-C., Xu J., Guo Z., Yi Y., Tian C., Que X., Giese T., Lee T.-S., York D. M., Ganguly A., Pan A.. Improvements in Precision of Relative Binding Free Energy Calculations Afforded by the Alchemical Enhanced Sampling (ACES) Approach. J. Chem. Inf. Model. 2024;64:7046–7055. doi: 10.1021/acs.jcim.4c00464. PubMed DOI PMC

Song L. F., Lee T.-S., Zhu C., York D. M., Merz K. M. J.. Using AMBER18 for Relative Free Energy Calculations. J. Chem. Inf. Model. 2019;59:3128–3135. doi: 10.1021/acs.jcim.9b00105. PubMed DOI PMC

Gapsys V., Perez-Benito L., Aldeghi M., Seeliger D., Van Vlijmen H., Tresadern G., de Groot B. L.. Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Chem. Sci. 2020;11:1140–1152. doi: 10.1039/C9SC03754C. PubMed DOI PMC

Zariquiey F. S., Perez A., Majewski M., Gallicchio E., De Fabritiis G.. Validation of the Alchemical Transfer Method for the Estimation of Relative Binding Affinities of Molecular Series. J. Chem. Inf. Model. 2023;63:2438–2444. doi: 10.1021/acs.jcim.3c00178. PubMed DOI PMC

Pecina A., Fanfrlík J., Lepšík M., Řezáč J.. SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. Nat. Commun. 2024;15:1127. doi: 10.1038/s41467-024-45431-8. PubMed DOI PMC

Ginex T., Vázquez J., Estarellas C., Luque J. F.. Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design. Curr. Opin. Struct. Biol. 2024;87:102870. doi: 10.1016/j.sbi.2024.102870. PubMed DOI

Pecina A., Eyrilmez S. M., Köprülüoğlu C., Miriyala V. M., Lepšík M., Fanfrlík J., Řezáč J., Hobza P.. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. ChemPlusChem. 2020;85:2362–2371. doi: 10.1002/cplu.202000120. PubMed DOI

Stewart J. J. P.. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007;13:1173–1213. doi: 10.1007/s00894-007-0233-4. PubMed DOI PMC

Řezáč J., Hobza P.. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI

Řezáč J., Hobza P.. A halogen-bonding correction for the semiempirical PM6 method. Chem. Phys. Lett. 2011;506:286–289. doi: 10.1016/j.cplett.2011.03.009. DOI

Kříž K., Řezáč J.. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2019;59:229–235. doi: 10.1021/acs.jcim.8b00681. PubMed DOI

Řezáč J.. Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding. J. Chem. Theory Comput. 2020;16:2355–2368. doi: 10.1021/acs.jctc.9b01265. PubMed DOI

Kříž K., Nováček M., Řezáč J.. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021;17:1548–1561. doi: 10.1021/acs.jctc.0c01341. PubMed DOI

Kříž K., Řezáč J.. Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer-Aided Drug Design. J. Chem. Inf. Model. 2020;60:1453–1460. doi: 10.1021/acs.jcim.9b01171. PubMed DOI

Řezáč J., Stewart J. J. P.. How well do semiempirical QM methods describe the structure of proteins? J. Chem. Phys. 2023;158:044118. doi: 10.1063/5.0135091. PubMed DOI

Stewart J. J. P.. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 1996;58:133–146. doi: 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z. DOI

Case, D. ; Aktulga, H. ; Belfon, K. ; Ben-Shalom, I. ; Berryman, J. ; Brozell, S. ; Cerutti, D. ; Cheatham, T. ; Cisneros, G. ; Cruzeiro, V. ; Darden, T. ; Duke, R. ; Giambasu, G. ; Gilson, M. ; Gohlke, H. ; Goetz, A. ; Harris, R. ; Izadi, S. ; Izmailov, S. ; Kasavajhala, K. ; Kaymak, M. ; King, E. ; Kovalenko, A. ; Kurtzman, T. ; Lee, T. ; LeGrand, S. ; Li, P. ; Lin, C. ; Liu, J. ; Luchko, T. ; Luo, R. ; Machado, M. ; Man, V. ; Manathunga, M. ; Merz, K. ; Miao, Y. ; Mikhailovskii, O. ; Monard, G. ; Nguyen, H. ; O\’Hearn, K. ; Onufriev, A. ; Pan, F. ; Pantano, S. ; Qi, R. ; Rahnamoun, A. ; Roe, D. ; Roitberg, A. ; Sagui, C. ; Schott-Verdugo, S. ; Shajan, A. ; Shen, J. ; Simmerling, C. ; Skrynnikov, N. ; Smith, J. ; Swails, J. ; Walker, R. ; Wang, J. ; Wei, H. ; Wolf, R. ; Wu, X. ; Xiong, Y. ; Xue, Y. ; York, D. ; Zhao, S. ; Kollman, P. . Amber 2022, 2022. http://ambermd.org.

Friesner R. A., Banks J., Murphy R., Halgren T., Klicic J., Mainz D., Repasky M., Knoll E., Shelley M., Perry J., Shaw D., Francis P., Shenkin P.. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI

Banks J. L., Beard H. S., Cao Y., Cho A. E., Damm W., Farid R., Felts A. K., Halgren T. A., Mainz D. T., Maple J. R., Murphy R., Philipp D. M., Repasky M. P., Zhang L. Y., Berne B. J., Friesner R. A., Gallicchio E., Levy R. M.. Integrated Modeling Program, Applied Chemical Theory (IMPACT) J. Comput. Chem. 2005;26:1752–1780. doi: 10.1002/jcc.20292. PubMed DOI PMC

Cumming J. N., Smith E. M., Wang L., Misiaszek J., Durkin J., Pan J., Iserloh U., Wu Y., Zhu Z., Strickland C., Voigt J., Chen X., Kennedy M. E., Kuvelkar R., Hyde L. A., Cox K., Favreau L., Czarniecki M. F., Greenlee W. J., McKittrick B. A., Parker E. M., Stamford A. W.. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett. 2012;22:2444–2449. doi: 10.1016/j.bmcl.2012.02.013. PubMed DOI

Tian C., Kasavajhala K., Belfon K. A. A., Raguette L., Huang H., Migues A. N., Bickel J., Wang Y., Pincay J., Wu Q., Simmerling C.. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI

Wang J., Wolf R., Caldwell J., Kollman P., Case D.. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Mongan J., Simmerling C., McCammon J. A., Case D. A., Onufriev A.. Generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput. 2007;3:156–169. doi: 10.1021/ct600085e. PubMed DOI PMC

Stewart, J. J. P. MOPAC, semiempirical QM software, 2016. http://openmopac.net/.

Řezáč J.. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI

Korb O., Stutzle T., Exner T. E.. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Trott O., Olson A. J.. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Eberhardt J., Santos-Martins D., Tillack A. F., Forli S.. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC

Quiroga R., Villarreal M. A.. Vinardo: AScoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS One. 2016;11:e0155183. doi: 10.1371/journal.pone.0155183. PubMed DOI PMC

Jones G., Willett P., Glen R., Leach A., Taylor R.. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997;267:727–748. doi: 10.1006/jmbi.1996.0897. PubMed DOI

Wang R., Lai L., Wang S.. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 2002;16:11–26. doi: 10.1023/A:1016357811882. PubMed DOI

Koes D. R., Baumgartner M. P., Camacho C. J.. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013;53:1893–1904. doi: 10.1021/ci300604z. PubMed DOI PMC

Li H., Leung K.-S., Wong M.-H., Ballester P. J.. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol. Inf. 2015;34:115–126. doi: 10.1002/minf.201400132. PubMed DOI

Stepniewska-Dziubinska M. M., Zielenkiewicz P., Siedlecki P.. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics. 2018;34:3666–3674. doi: 10.1093/bioinformatics/bty374. PubMed DOI PMC

Moon S., Hwang S.-Y., Lim J., Kim W. Y.. PIGNet2: AVersatile Deep Learning-based Protein-Ligand Interaction Prediction Model for Binding Affinity Scoring and Virtual Screening. Digital Discovery. 2023;3:287–299. doi: 10.1039/d3dd00149k. DOI

Wang C., Zhang Y.. Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. J. Comput. Chem. 2017;38:169–177. doi: 10.1002/jcc.24667. PubMed DOI PMC

Durrant J. D., McCammon J. A.. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graphics Model. 2011;29:888–893. doi: 10.1016/j.jmgm.2011.01.004. PubMed DOI PMC

Yang C., Zhang Y.. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein–Ligand Scoring Functions. J. Chem. Inf. Model. 2022;62:2696–2712. doi: 10.1021/acs.jcim.2c00485. PubMed DOI PMC

Su M., Yang Q., Du Y., Feng G., Liu Z., Li Y., Wang R.. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019;59:895–913. doi: 10.1021/acs.jcim.8b00545. PubMed DOI

Jiménez J., Škalič M., Martínez-Rosell G., De Fabritiis G.. KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J. Chem. Inf. Model. 2018;58:287–296. doi: 10.1021/acs.jcim.7b00650. PubMed DOI

Wu J. Z., Azimi S., Khuttan S., Deng N., Gallicchio E.. Alchemical Transfer Approach to Absolute Binding Free Energy Estimation. J. Chem. Inf. Model. 2021;17:3309–3319. doi: 10.1021/acs.jctc.1c00266. PubMed DOI

Gilson M. K., Stewart L. E., Potter M. J., Webb S. P.. Rapid, Accurate, Ranking of Protein–Ligand Binding Affinities with VM2, the Second-Generation Mining Minima Method. J. Chem. Theory Comput. 2024;20:6328–6340. doi: 10.1021/acs.jctc.4c00407. PubMed DOI PMC

Yao Y., Liu R., Li W., Huang W., Lai Y., Luo H.-B., Li Z.. Convergence-Adaptive Roundtrip Method Enables Rapid and Accurate FEP Calculations. J. Chem. Theory Comput. 2024;20:8354–8366. doi: 10.1021/acs.jctc.4c00939. PubMed DOI

Zariquiey F. S., Galvelis R., Gallicchio E., Chodera J. D., Markland T. E., De Fabritiis G.. Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials. J. Chem. Inf. Model. 2024;64:1481–1485. doi: 10.1021/acs.jcim.3c02031. PubMed DOI PMC

Lee T.-S., Allen B. K., Giese T. J., Guo Z., Li P., Lin C., McGee T. D. Jr., Pearlman D. A., Radak B. K., Tao Y., Tsai H.-C., Xu H., Sherman W., York D. M.. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J. Chem. Inf. Model. 2020;60:5595–5623. doi: 10.1021/acs.jcim.0c00613. PubMed DOI PMC

Hahn D. F., Gapsys V., de Groot B. L., Mobley D. L., Tresadern G.. Current State of Open Source Force Fields in Protein–Ligand Binding Affinity Predictions. J. Chem. Inf. Model. 2024;64:5063–5076. doi: 10.1021/acs.jcim.4c00417. PubMed DOI PMC

Giese T. J., York D. M.. Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints. J. Chem. Theory Comput. 2021;17:1326–1336. doi: 10.1021/acs.jctc.0c01219. PubMed DOI PMC

Cappel D., Jerome S., Hessler G., Matter H.. Impact of Different Automated Binding Pose Generation Approaches on Relative Binding Free Energy Simulations. J. Chem. Inf. Model. 2020;60:1432–1444. doi: 10.1021/acs.jcim.9b01118. PubMed DOI

Pérez-Benito L., Casajuana-Martin N., Jiménez-Rosés M., van Vlijmen H., Tresadern G.. Predicting Activity Cliffs with Free-Energy Perturbation. J. Chem. Theory Comput. 2019;15:1884–1895. doi: 10.1021/acs.jctc.8b01290. PubMed DOI

Lee T.-S., Hu Y., Sherborne B., Guo Z., York D. M.. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration. J. Chem. Theory Comput. 2017;13:3077–3084. doi: 10.1021/acs.jctc.7b00102. PubMed DOI PMC

Lee T.-S., Cerutti D. S., Mermelstein D., Lin C., LeGrand S., Giese T. J., Roitberg A., Case D. A., Walker R. C., York D. M.. GPU-Accelerated Molecular Dynamics and Free Energy Methods in Amber18: Performance Enhancements and New Features. J. Chem. Inf. Model. 2018;58:2043–2050. doi: 10.1021/acs.jcim.8b00462. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...