Comparative Analysis of Quantum-Mechanical and Standard Single-Structure Protein-Ligand Scoring Functions with MD-Based Free Energy Calculations
Language English Country United States Media print-electronic
Document type Journal Article, Comparative Study
PubMed
40682535
PubMed Central
PMC12344775
DOI
10.1021/acs.jcim.5c00604
Knihovny.cz E-resources
- MeSH
- Protein Conformation MeSH
- Quantum Theory * MeSH
- Ligands MeSH
- Proteins * chemistry metabolism MeSH
- Molecular Dynamics Simulation * MeSH
- Thermodynamics MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Ligands MeSH
- Proteins * MeSH
Single-structure scoring functions have been considered inferior to expensive ensemble free energy methods in predicting protein-ligand affinities. We are revisiting this dogma with the recently developed semiempirical quantum-mechanical (SQM)-based scoring function, SQM2.20, comparing its performance to the standard scoring functions on one hand and state-of-the-art molecular dynamics (MD)-based free-energy methods on the other hand. The comparison is conducted on a well-established Wang data set comprising eight protein targets with 200 ligands. The initial low correlation of SQM2.20 scores with the experimental binding affinities of R2 = 0.21 was improved to R2 = 0.47 by a systematic refinement of the input structures and omission of the ligand deformation energy. Consequently, SQM2.20 representing accurate single-structure scoring functions, exhibited an average performance comparable to that of MD-based methods (R2 = 0.52) and surpassed the performance of standard scoring functions (R2 = 0.26). The per-target analysis highlighted the pivotal role of high-quality input structures on the outcomes of single-structure methods. In the instances where such structures are available, SQM2.20 scoring has been shown to rival or even exceed MD-based methods in predicting protein-ligand binding affinities, while exhibiting significantly reduced computation time.
See more in PubMed
Sabe V. T., Ntombela T., Jhamba L. A., Maguire G. E. M., Govender T., Naicker T., Kruger H. G.. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021;224:113705. doi: 10.1016/j.ejmech.2021.113705. PubMed DOI
Kramer C., Chodera J., Damm-Ganamet K., Gilson M., Günther J., Lessel U., Lewis R., Mobley D., Nittinger E., Pecina A., Schapira M., Walters W. P.. The Need for continuing blinded Pose- and Activity Prediction Benchmarks. J. Chem. Inf. Model. 2025;65:2180–2190. doi: 10.1021/acs.jcim.4c02296. PubMed DOI
Wang L., Wu Y., Deng Y., Kim B., Pierce L., Krilov G., Lupyan D., Robinson S., Dahlgren M. K., Greenwood J., Romero D. L., Masse C., Knight J. L., Steinbrecher T., Beuming T., Damm W., Harder E., Sherman W., Brewer M., Wester R., Murcko M., Frye L., Farid R., Lin T., Mobley D. L., Jorgensen W. L., Berne B. J., Friesner R. A., Abel R.. Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. J. Am. Chem. Soc. 2015;137:2695–2703. doi: 10.1021/ja512751q. PubMed DOI
Ross G. A., Lu C., Scarabelli G., Albanese S. K., Houang E., Abel R., Harder E. D., Wang L.. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations. Commun. Chem. 2023;6:222. doi: 10.1038/s42004-023-01019-9. PubMed DOI PMC
Kuhn M., Firth-Clark S., Tosco P., Mey A. S. J. S., Mackey M., Michel J.. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J. Chem. Inf. Model. 2020;60:3120–3130. doi: 10.1021/acs.jcim.0c00165. PubMed DOI
Tsai H.-C., Xu J., Guo Z., Yi Y., Tian C., Que X., Giese T., Lee T.-S., York D. M., Ganguly A., Pan A.. Improvements in Precision of Relative Binding Free Energy Calculations Afforded by the Alchemical Enhanced Sampling (ACES) Approach. J. Chem. Inf. Model. 2024;64:7046–7055. doi: 10.1021/acs.jcim.4c00464. PubMed DOI PMC
Song L. F., Lee T.-S., Zhu C., York D. M., Merz K. M. J.. Using AMBER18 for Relative Free Energy Calculations. J. Chem. Inf. Model. 2019;59:3128–3135. doi: 10.1021/acs.jcim.9b00105. PubMed DOI PMC
Gapsys V., Perez-Benito L., Aldeghi M., Seeliger D., Van Vlijmen H., Tresadern G., de Groot B. L.. Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Chem. Sci. 2020;11:1140–1152. doi: 10.1039/C9SC03754C. PubMed DOI PMC
Zariquiey F. S., Perez A., Majewski M., Gallicchio E., De Fabritiis G.. Validation of the Alchemical Transfer Method for the Estimation of Relative Binding Affinities of Molecular Series. J. Chem. Inf. Model. 2023;63:2438–2444. doi: 10.1021/acs.jcim.3c00178. PubMed DOI PMC
Pecina A., Fanfrlík J., Lepšík M., Řezáč J.. SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. Nat. Commun. 2024;15:1127. doi: 10.1038/s41467-024-45431-8. PubMed DOI PMC
Ginex T., Vázquez J., Estarellas C., Luque J. F.. Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design. Curr. Opin. Struct. Biol. 2024;87:102870. doi: 10.1016/j.sbi.2024.102870. PubMed DOI
Pecina A., Eyrilmez S. M., Köprülüoğlu C., Miriyala V. M., Lepšík M., Fanfrlík J., Řezáč J., Hobza P.. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. ChemPlusChem. 2020;85:2362–2371. doi: 10.1002/cplu.202000120. PubMed DOI
Stewart J. J. P.. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007;13:1173–1213. doi: 10.1007/s00894-007-0233-4. PubMed DOI PMC
Řezáč J., Hobza P.. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI
Řezáč J., Hobza P.. A halogen-bonding correction for the semiempirical PM6 method. Chem. Phys. Lett. 2011;506:286–289. doi: 10.1016/j.cplett.2011.03.009. DOI
Kříž K., Řezáč J.. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2019;59:229–235. doi: 10.1021/acs.jcim.8b00681. PubMed DOI
Řezáč J.. Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding. J. Chem. Theory Comput. 2020;16:2355–2368. doi: 10.1021/acs.jctc.9b01265. PubMed DOI
Kříž K., Nováček M., Řezáč J.. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021;17:1548–1561. doi: 10.1021/acs.jctc.0c01341. PubMed DOI
Kříž K., Řezáč J.. Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer-Aided Drug Design. J. Chem. Inf. Model. 2020;60:1453–1460. doi: 10.1021/acs.jcim.9b01171. PubMed DOI
Řezáč J., Stewart J. J. P.. How well do semiempirical QM methods describe the structure of proteins? J. Chem. Phys. 2023;158:044118. doi: 10.1063/5.0135091. PubMed DOI
Stewart J. J. P.. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 1996;58:133–146. doi: 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z. DOI
Case, D. ; Aktulga, H. ; Belfon, K. ; Ben-Shalom, I. ; Berryman, J. ; Brozell, S. ; Cerutti, D. ; Cheatham, T. ; Cisneros, G. ; Cruzeiro, V. ; Darden, T. ; Duke, R. ; Giambasu, G. ; Gilson, M. ; Gohlke, H. ; Goetz, A. ; Harris, R. ; Izadi, S. ; Izmailov, S. ; Kasavajhala, K. ; Kaymak, M. ; King, E. ; Kovalenko, A. ; Kurtzman, T. ; Lee, T. ; LeGrand, S. ; Li, P. ; Lin, C. ; Liu, J. ; Luchko, T. ; Luo, R. ; Machado, M. ; Man, V. ; Manathunga, M. ; Merz, K. ; Miao, Y. ; Mikhailovskii, O. ; Monard, G. ; Nguyen, H. ; O\’Hearn, K. ; Onufriev, A. ; Pan, F. ; Pantano, S. ; Qi, R. ; Rahnamoun, A. ; Roe, D. ; Roitberg, A. ; Sagui, C. ; Schott-Verdugo, S. ; Shajan, A. ; Shen, J. ; Simmerling, C. ; Skrynnikov, N. ; Smith, J. ; Swails, J. ; Walker, R. ; Wang, J. ; Wei, H. ; Wolf, R. ; Wu, X. ; Xiong, Y. ; Xue, Y. ; York, D. ; Zhao, S. ; Kollman, P. . Amber 2022, 2022. http://ambermd.org.
Friesner R. A., Banks J., Murphy R., Halgren T., Klicic J., Mainz D., Repasky M., Knoll E., Shelley M., Perry J., Shaw D., Francis P., Shenkin P.. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Banks J. L., Beard H. S., Cao Y., Cho A. E., Damm W., Farid R., Felts A. K., Halgren T. A., Mainz D. T., Maple J. R., Murphy R., Philipp D. M., Repasky M. P., Zhang L. Y., Berne B. J., Friesner R. A., Gallicchio E., Levy R. M.. Integrated Modeling Program, Applied Chemical Theory (IMPACT) J. Comput. Chem. 2005;26:1752–1780. doi: 10.1002/jcc.20292. PubMed DOI PMC
Cumming J. N., Smith E. M., Wang L., Misiaszek J., Durkin J., Pan J., Iserloh U., Wu Y., Zhu Z., Strickland C., Voigt J., Chen X., Kennedy M. E., Kuvelkar R., Hyde L. A., Cox K., Favreau L., Czarniecki M. F., Greenlee W. J., McKittrick B. A., Parker E. M., Stamford A. W.. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett. 2012;22:2444–2449. doi: 10.1016/j.bmcl.2012.02.013. PubMed DOI
Tian C., Kasavajhala K., Belfon K. A. A., Raguette L., Huang H., Migues A. N., Bickel J., Wang Y., Pincay J., Wu Q., Simmerling C.. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI
Wang J., Wolf R., Caldwell J., Kollman P., Case D.. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Mongan J., Simmerling C., McCammon J. A., Case D. A., Onufriev A.. Generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput. 2007;3:156–169. doi: 10.1021/ct600085e. PubMed DOI PMC
Stewart, J. J. P. MOPAC, semiempirical QM software, 2016. http://openmopac.net/.
Řezáč J.. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI
Korb O., Stutzle T., Exner T. E.. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Trott O., Olson A. J.. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Eberhardt J., Santos-Martins D., Tillack A. F., Forli S.. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Quiroga R., Villarreal M. A.. Vinardo: AScoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS One. 2016;11:e0155183. doi: 10.1371/journal.pone.0155183. PubMed DOI PMC
Jones G., Willett P., Glen R., Leach A., Taylor R.. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997;267:727–748. doi: 10.1006/jmbi.1996.0897. PubMed DOI
Wang R., Lai L., Wang S.. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 2002;16:11–26. doi: 10.1023/A:1016357811882. PubMed DOI
Koes D. R., Baumgartner M. P., Camacho C. J.. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013;53:1893–1904. doi: 10.1021/ci300604z. PubMed DOI PMC
Li H., Leung K.-S., Wong M.-H., Ballester P. J.. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol. Inf. 2015;34:115–126. doi: 10.1002/minf.201400132. PubMed DOI
Stepniewska-Dziubinska M. M., Zielenkiewicz P., Siedlecki P.. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics. 2018;34:3666–3674. doi: 10.1093/bioinformatics/bty374. PubMed DOI PMC
Moon S., Hwang S.-Y., Lim J., Kim W. Y.. PIGNet2: AVersatile Deep Learning-based Protein-Ligand Interaction Prediction Model for Binding Affinity Scoring and Virtual Screening. Digital Discovery. 2023;3:287–299. doi: 10.1039/d3dd00149k. DOI
Wang C., Zhang Y.. Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. J. Comput. Chem. 2017;38:169–177. doi: 10.1002/jcc.24667. PubMed DOI PMC
Durrant J. D., McCammon J. A.. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graphics Model. 2011;29:888–893. doi: 10.1016/j.jmgm.2011.01.004. PubMed DOI PMC
Yang C., Zhang Y.. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein–Ligand Scoring Functions. J. Chem. Inf. Model. 2022;62:2696–2712. doi: 10.1021/acs.jcim.2c00485. PubMed DOI PMC
Su M., Yang Q., Du Y., Feng G., Liu Z., Li Y., Wang R.. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019;59:895–913. doi: 10.1021/acs.jcim.8b00545. PubMed DOI
Jiménez J., Škalič M., Martínez-Rosell G., De Fabritiis G.. KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J. Chem. Inf. Model. 2018;58:287–296. doi: 10.1021/acs.jcim.7b00650. PubMed DOI
Wu J. Z., Azimi S., Khuttan S., Deng N., Gallicchio E.. Alchemical Transfer Approach to Absolute Binding Free Energy Estimation. J. Chem. Inf. Model. 2021;17:3309–3319. doi: 10.1021/acs.jctc.1c00266. PubMed DOI
Gilson M. K., Stewart L. E., Potter M. J., Webb S. P.. Rapid, Accurate, Ranking of Protein–Ligand Binding Affinities with VM2, the Second-Generation Mining Minima Method. J. Chem. Theory Comput. 2024;20:6328–6340. doi: 10.1021/acs.jctc.4c00407. PubMed DOI PMC
Yao Y., Liu R., Li W., Huang W., Lai Y., Luo H.-B., Li Z.. Convergence-Adaptive Roundtrip Method Enables Rapid and Accurate FEP Calculations. J. Chem. Theory Comput. 2024;20:8354–8366. doi: 10.1021/acs.jctc.4c00939. PubMed DOI
Zariquiey F. S., Galvelis R., Gallicchio E., Chodera J. D., Markland T. E., De Fabritiis G.. Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials. J. Chem. Inf. Model. 2024;64:1481–1485. doi: 10.1021/acs.jcim.3c02031. PubMed DOI PMC
Lee T.-S., Allen B. K., Giese T. J., Guo Z., Li P., Lin C., McGee T. D. Jr., Pearlman D. A., Radak B. K., Tao Y., Tsai H.-C., Xu H., Sherman W., York D. M.. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J. Chem. Inf. Model. 2020;60:5595–5623. doi: 10.1021/acs.jcim.0c00613. PubMed DOI PMC
Hahn D. F., Gapsys V., de Groot B. L., Mobley D. L., Tresadern G.. Current State of Open Source Force Fields in Protein–Ligand Binding Affinity Predictions. J. Chem. Inf. Model. 2024;64:5063–5076. doi: 10.1021/acs.jcim.4c00417. PubMed DOI PMC
Giese T. J., York D. M.. Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints. J. Chem. Theory Comput. 2021;17:1326–1336. doi: 10.1021/acs.jctc.0c01219. PubMed DOI PMC
Cappel D., Jerome S., Hessler G., Matter H.. Impact of Different Automated Binding Pose Generation Approaches on Relative Binding Free Energy Simulations. J. Chem. Inf. Model. 2020;60:1432–1444. doi: 10.1021/acs.jcim.9b01118. PubMed DOI
Pérez-Benito L., Casajuana-Martin N., Jiménez-Rosés M., van Vlijmen H., Tresadern G.. Predicting Activity Cliffs with Free-Energy Perturbation. J. Chem. Theory Comput. 2019;15:1884–1895. doi: 10.1021/acs.jctc.8b01290. PubMed DOI
Lee T.-S., Hu Y., Sherborne B., Guo Z., York D. M.. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration. J. Chem. Theory Comput. 2017;13:3077–3084. doi: 10.1021/acs.jctc.7b00102. PubMed DOI PMC
Lee T.-S., Cerutti D. S., Mermelstein D., Lin C., LeGrand S., Giese T. J., Roitberg A., Case D. A., Walker R. C., York D. M.. GPU-Accelerated Molecular Dynamics and Free Energy Methods in Amber18: Performance Enhancements and New Features. J. Chem. Inf. Model. 2018;58:2043–2050. doi: 10.1021/acs.jcim.8b00462. PubMed DOI PMC