On-Resin Assembly of Macrocyclic Inhibitors of Cryptococcus neoformans May1: A Pathway to Potent Antifungal Agents

. 2025 May 08 ; 68 (9) : 9623-9637. [epub] 20250422

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40262033

Grantová podpora
F32 AI152270 NIAID NIH HHS - United States
U54 AI170792 NIAID NIH HHS - United States

Macrocyclic inhibitors have emerged as a privileged scaffold in medicinal chemistry, offering enhanced selectivity, stability, and pharmacokinetic profiles compared to their linear counterparts. Here, we describe a novel, on-resin macrocyclization strategy for the synthesis of potent inhibitors targeting the secreted protease Major Aspartyl Peptidase 1 in Cryptococcus neoformans, a pathogen responsible for life-threatening fungal infections. By employing diverse aliphatic linkers and statine-based transition-state mimics, we constructed a focused library of 624 macrocyclic compounds. Screening identified several subnanomolar inhibitors with desirable pharmacokinetic and antifungal properties. Lead compound 25 exhibited a Ki of 180 pM, significant selectivity against host proteases, and potent antifungal activity in culture. The streamlined synthetic approach not only yielded drug-like macrocycles with potential in antifungal therapy but also provided insights into structure-activity relationships that can inform broader applications of macrocyclization in drug discovery.

Zobrazit více v PubMed

Shimizu T.; Takahashi N.; Huber V. J.; Asawa Y.; Ueda H.; Yoshimori A.; Muramatsu Y.; Seimiya H.; Kouji H.; Nakamura H.; Oguri H. Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1alpha. Bioorg. Med. Chem. 2021, 30, 115949.10.1016/j.bmc.2020.115949. PubMed DOI

Andersson H.; Demaegdt H.; Johnsson A.; Vauquelin G.; Lindeberg G.; Hallberg M.; Erdélyi M.; Karlén A.; Hallberg A. Potent Macrocyclic Inhibitors of Insulin-Regulated Aminopeptidase (IRAP) by Olefin Ring-Closing Metathesis. J. Med. Chem. 2011, 54 (11), 3779–3792. 10.1021/jm200036n. PubMed DOI

Marsault E.; Peterson M. L. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 2011, 54 (7), 1961–2004. 10.1021/jm1012374. PubMed DOI

Plais L.; Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem. Biol. 2022, 3 (1), 7–17. 10.1039/D1CB00161B. PubMed DOI PMC

Huang Y.; Wiedmann M. M.; Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem. Rev. 2019, 119 (17), 10360–10391. 10.1021/acs.chemrev.8b00430. PubMed DOI

Chen F.-J.; Pinnette N.; Gao J. Strategies for the Construction of Multicyclic Phage Display Libraries. ChemBioChem 2024, 25 (9), e20240007210.1002/cbic.202400072. PubMed DOI PMC

Ullrich S.; Nitsche C. Bicyclic peptides: Paving the road for therapeutics of the future. Pept. Sci. 2024, 116 (2), e2432610.1002/pep2.24326. DOI

Garcia Jimenez D.; Poongavanam V.; Kihlberg J. Macrocycles in Drug Discovery–Learning from the Past for the Future. J. Med. Chem. 2023, 66 (8), 5377–5396. 10.1021/acs.jmedchem.3c00134. PubMed DOI PMC

Thurakkal L.; Nanjan P.; Porel M. Design, synthesis and bioactive properties of a class of macrocycles with tunable functional groups and ring size. Sci. Rep. 2022, 12 (1), 4815.10.1038/s41598-022-08775-z. PubMed DOI PMC

Cummings M. D.; Sekharan S. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. J. Med. Chem. 2019, 62 (15), 6843–6853. 10.1021/acs.jmedchem.8b01985. PubMed DOI

Houštecká R.; Hadzima M.; Fanfrlík J.; Brynda J.; Pallová L.; Hánová I.; Mertlíková-Kaiserová H.; Lepšík M.; Horn M.; Smrčina M.; et al. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure–Activity Relationship and Binding Mode Analysis. J. Med. Chem. 2020, 63 (4), 1576–1596. 10.1021/acs.jmedchem.9b01351. PubMed DOI

White C. J.; Yudin A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3 (7), 509–524. 10.1038/nchem.1062. PubMed DOI

Giordanetto F.; Kihlberg J. Macrocyclic Drugs and Clinical Candidates: What Can Medicinal Chemists Learn from Their Properties?. J. Med. Chem. 2014, 57 (2), 278–295. 10.1021/jm400887j. PubMed DOI

Vanga S. R.; Sävmarker J.; Ng L.; Larhed M.; Hallberg M.; Åqvist J.; Hallberg A.; Chai S. Y.; Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS Omega 2018, 3 (4), 4509–4521. 10.1021/acsomega.8b00595. PubMed DOI PMC

Clarke S. C.; Dumesic P. A.; Homer C. M.; O’Donoghue A. J.; La Greca F.; Pallova L.; Majer P.; Madhani H. D.; Craik C. S. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog. 2016, 12 (12), e100605110.1371/journal.ppat.1006051. PubMed DOI PMC

Denning D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24 (7), e428–e438. 10.1016/S1473-3099(23)00692-8. PubMed DOI

Kryštůfek R.; Šácha P.; Starková J.; Brynda J.; Hradilek M.; Tloušt’ová E.; Grzymska J.; Rut W.; Boucher M. J.; Drąg M.; et al. Re-emerging Aspartic Protease Targets: Examining Cryptococcus neoformans Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery. J. Med. Chem. 2021, 64 (10), 6706–6719. 10.1021/acs.jmedchem.0c02177. PubMed DOI PMC

Sondag D.; Heming J. J. A.; Löwik D. W. P. M.; Krivosheeva E.; Lejeune D.; van Geffen M.; van’t Veer C.; van Heerde W. L.; Beens M. C. J.; Kuijpers B. H. M.; et al. Solid-Phase Synthesis of Caged Luminescent Peptides via Side Chain Anchoring. Bioconjugate Chem. 2023, 34 (12), 2234–2242. 10.1021/acs.bioconjchem.3c00381. PubMed DOI PMC

Sinnokrot M. O.; Sherrill C. D. Substituent Effects in π–π Interactions: Sandwich and T-Shaped Configurations. J. Am. Chem. Soc. 2004, 126 (24), 7690–7697. 10.1021/ja049434a. PubMed DOI

Pecina A.; Fanfrlík J.; Lepšík M.; Řezáč J. SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. Nat. Commun. 2024, 15 (1), 1127.10.1038/s41467-024-45431-8. PubMed DOI PMC

Callebaut C.; Stray K.; Tsai L.; Williams M.; Yang Z. Y.; Cannizzaro C.; Leavitt S. A.; Liu X.; Wang K.; Murray B. P.; et al. In vitro characterization of GS-8374, a novel phosphonate-containing inhibitor of HIV-1 protease with a favorable resistance profile. Antimicrob. Agents Chemother. 2011, 55 (4), 1366–1376. 10.1128/AAC.01183-10. PubMed DOI PMC

Sprouffske K.; Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinf. 2016, 17, 172.10.1186/s12859-016-1016-7. PubMed DOI PMC

Hradilek M.; Rinnová M.; Bařinka C.; Souček M.; Konvalinka J.. Analysis of substrate specificity of HIV protease species. Peptides for the New Millennium: Proceedings of the 16th American Peptide Symposium June 26–July 1, 1999, Minneapolis, Minnesota, U.S.A.; Fields G. B., Tam J. P.; Barany G., Eds.; Springer: Netherlands, 2002, pp 474–475.

Perfect J. R.; Dismukes W. E.; Dromer F.; Goldman D. L.; Graybill J. R.; Hamill R. J.; Harrison T. S.; Larsen R. A.; Lortholary O.; Nguyen M.-H.; et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50 (3), 291–322. 10.1086/649858. PubMed DOI PMC

Li Y.; Chadwick B.; Pham T.; Xie X.; Lin X. Aspartyl peptidase May1 induces host inflammatory response by altering cell wall composition in the fungal pathogen Cryptococcus neoformans. mBio 2024, 15 (6), e009202410.1128/mbio.00920-24. PubMed DOI PMC

Upadhya R.; Lam W. C.; Hole C. R.; Vasselli J. G.; Lodge J. K. Cell wall composition in Cryptococcus neoformans is media dependent and alters host response, inducing protective immunity. Front. Fungal Biol. 2023, 4, 1183291.10.3389/ffunb.2023.1183291. PubMed DOI PMC

Holzman T. F.; Chung C. C.; Edalji R.; Egan D. A.; Gubbins E. J.; Rueter A.; Howard G.; Yang L. K.; Pederson T. M.; Krafft G. A.; et al. Recombinant human prorenin from CHO cells: expression and purification. J. Protein Chem. 1990, 9 (6), 663–672. 10.1007/BF01024761. PubMed DOI

Gray S. P.; Billings J. A. Kinetic assay of human pepsin with albumin-bromphenol blue as substrate. Clin. Chem. 1983, 29 (3), 447–451. 10.1093/clinchem/29.3.447. PubMed DOI

Yasuda Y.; Kageyama T.; Akamine A.; Shibata M.; Kominami E.; Uchiyama Y.; Yamamoto K. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem. 1999, 125 (6), 1137–1143. 10.1093/oxfordjournals.jbchem.a022396. PubMed DOI

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 133–144. 10.1107/S0907444909047374. PubMed DOI PMC

Vagin A.; Teplyakov A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 1997, 30, 1022–1025. 10.1107/S0021889897006766. DOI

Vagin A. A.; Steiner R. A.; Lebedev A. A.; Potterton L.; McNicholas S.; Long F.; Murshudov G. N. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2184–2195. 10.1107/S0907444904023510. PubMed DOI

Laskowski R. A.; Swindells M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. 10.1021/ci200227u. PubMed DOI

Bietz S.; Urbaczek S.; Schulz B.; Rarey M. Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J. Cheminf. 2014, 6 (1), 12.10.1186/1758-2946-6-12. PubMed DOI PMC

Madhavi Sastry G.; Adzhigirey M.; Day T.; Annabhimoju R.; Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27 (3), 221–234. 10.1007/s10822-013-9644-8. PubMed DOI

Kříž K.; Řezáč J. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2019, 59 (1), 229–235. 10.1021/acs.jcim.8b00681. PubMed DOI

Řezáč J.; Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8 (1), 141–151. 10.1021/ct200751e. PubMed DOI

Stewart J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13 (12), 1173–1213. 10.1007/s00894-007-0233-4. PubMed DOI PMC

Zhang Y.; Huo M.; Zhou J.; Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99 (3), 306–314. 10.1016/j.cmpb.2010.01.007. PubMed DOI

Gabriel S. Ueber eine Darstellungsweise primärer Amine aus den entsprechenden Halogenverbindungen. Ber. Dtsch. Chem. Ges. 1887, 20 (2), 2224–2236. 10.1002/cber.18870200227. DOI

Vozdvizhenskaya O. A.; Andronova V. L.; Galegov G. A.; Levit G. L.; Krasnov V. P.; Charushin V. N. Synthesis and antiherpetic activity of novel purine conjugates with 7,8-difluoro-3-methyl-3,4-dihydro-2H-1,4-benzoxazine. Chem. Heterocycl. Compd. 2021, 57 (4), 490–497. 10.1007/s10593-021-02929-z. DOI

Batch LCMS Processing Tool for Mnova MSChrom. https://github.com/robinkrystufek/LCMSbatch (accessed April 1, 2025).

Baell J. B.; Holloway G. A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53 (7), 2719–2740. 10.1021/jm901137j. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...