On-Resin Assembly of Macrocyclic Inhibitors of Cryptococcus neoformans May1: A Pathway to Potent Antifungal Agents
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
F32 AI152270
NIAID NIH HHS - United States
U54 AI170792
NIAID NIH HHS - United States
PubMed
40262033
PubMed Central
PMC12067429
DOI
10.1021/acs.jmedchem.5c00396
Knihovny.cz E-zdroje
- MeSH
- antifungální látky * farmakologie chemie chemická syntéza farmakokinetika MeSH
- Cryptococcus neoformans * účinky léků enzymologie MeSH
- inhibitory proteas * farmakologie chemie chemická syntéza farmakokinetika MeSH
- lidé MeSH
- makrocyklické sloučeniny * farmakologie chemie chemická syntéza farmakokinetika MeSH
- mikrobiální testy citlivosti MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antifungální látky * MeSH
- inhibitory proteas * MeSH
- makrocyklické sloučeniny * MeSH
Macrocyclic inhibitors have emerged as a privileged scaffold in medicinal chemistry, offering enhanced selectivity, stability, and pharmacokinetic profiles compared to their linear counterparts. Here, we describe a novel, on-resin macrocyclization strategy for the synthesis of potent inhibitors targeting the secreted protease Major Aspartyl Peptidase 1 in Cryptococcus neoformans, a pathogen responsible for life-threatening fungal infections. By employing diverse aliphatic linkers and statine-based transition-state mimics, we constructed a focused library of 624 macrocyclic compounds. Screening identified several subnanomolar inhibitors with desirable pharmacokinetic and antifungal properties. Lead compound 25 exhibited a Ki of 180 pM, significant selectivity against host proteases, and potent antifungal activity in culture. The streamlined synthetic approach not only yielded drug-like macrocycles with potential in antifungal therapy but also provided insights into structure-activity relationships that can inform broader applications of macrocyclization in drug discovery.
Zobrazit více v PubMed
Shimizu T.; Takahashi N.; Huber V. J.; Asawa Y.; Ueda H.; Yoshimori A.; Muramatsu Y.; Seimiya H.; Kouji H.; Nakamura H.; Oguri H. Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1alpha. Bioorg. Med. Chem. 2021, 30, 115949.10.1016/j.bmc.2020.115949. PubMed DOI
Andersson H.; Demaegdt H.; Johnsson A.; Vauquelin G.; Lindeberg G.; Hallberg M.; Erdélyi M.; Karlén A.; Hallberg A. Potent Macrocyclic Inhibitors of Insulin-Regulated Aminopeptidase (IRAP) by Olefin Ring-Closing Metathesis. J. Med. Chem. 2011, 54 (11), 3779–3792. 10.1021/jm200036n. PubMed DOI
Marsault E.; Peterson M. L. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 2011, 54 (7), 1961–2004. 10.1021/jm1012374. PubMed DOI
Plais L.; Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem. Biol. 2022, 3 (1), 7–17. 10.1039/D1CB00161B. PubMed DOI PMC
Huang Y.; Wiedmann M. M.; Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem. Rev. 2019, 119 (17), 10360–10391. 10.1021/acs.chemrev.8b00430. PubMed DOI
Chen F.-J.; Pinnette N.; Gao J. Strategies for the Construction of Multicyclic Phage Display Libraries. ChemBioChem 2024, 25 (9), e20240007210.1002/cbic.202400072. PubMed DOI PMC
Ullrich S.; Nitsche C. Bicyclic peptides: Paving the road for therapeutics of the future. Pept. Sci. 2024, 116 (2), e2432610.1002/pep2.24326. DOI
Garcia Jimenez D.; Poongavanam V.; Kihlberg J. Macrocycles in Drug Discovery–Learning from the Past for the Future. J. Med. Chem. 2023, 66 (8), 5377–5396. 10.1021/acs.jmedchem.3c00134. PubMed DOI PMC
Thurakkal L.; Nanjan P.; Porel M. Design, synthesis and bioactive properties of a class of macrocycles with tunable functional groups and ring size. Sci. Rep. 2022, 12 (1), 4815.10.1038/s41598-022-08775-z. PubMed DOI PMC
Cummings M. D.; Sekharan S. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. J. Med. Chem. 2019, 62 (15), 6843–6853. 10.1021/acs.jmedchem.8b01985. PubMed DOI
Houštecká R.; Hadzima M.; Fanfrlík J.; Brynda J.; Pallová L.; Hánová I.; Mertlíková-Kaiserová H.; Lepšík M.; Horn M.; Smrčina M.; et al. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure–Activity Relationship and Binding Mode Analysis. J. Med. Chem. 2020, 63 (4), 1576–1596. 10.1021/acs.jmedchem.9b01351. PubMed DOI
White C. J.; Yudin A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3 (7), 509–524. 10.1038/nchem.1062. PubMed DOI
Giordanetto F.; Kihlberg J. Macrocyclic Drugs and Clinical Candidates: What Can Medicinal Chemists Learn from Their Properties?. J. Med. Chem. 2014, 57 (2), 278–295. 10.1021/jm400887j. PubMed DOI
Vanga S. R.; Sävmarker J.; Ng L.; Larhed M.; Hallberg M.; Åqvist J.; Hallberg A.; Chai S. Y.; Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS Omega 2018, 3 (4), 4509–4521. 10.1021/acsomega.8b00595. PubMed DOI PMC
Clarke S. C.; Dumesic P. A.; Homer C. M.; O’Donoghue A. J.; La Greca F.; Pallova L.; Majer P.; Madhani H. D.; Craik C. S. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog. 2016, 12 (12), e100605110.1371/journal.ppat.1006051. PubMed DOI PMC
Denning D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24 (7), e428–e438. 10.1016/S1473-3099(23)00692-8. PubMed DOI
Kryštůfek R.; Šácha P.; Starková J.; Brynda J.; Hradilek M.; Tloušt’ová E.; Grzymska J.; Rut W.; Boucher M. J.; Drąg M.; et al. Re-emerging Aspartic Protease Targets: Examining Cryptococcus neoformans Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery. J. Med. Chem. 2021, 64 (10), 6706–6719. 10.1021/acs.jmedchem.0c02177. PubMed DOI PMC
Sondag D.; Heming J. J. A.; Löwik D. W. P. M.; Krivosheeva E.; Lejeune D.; van Geffen M.; van’t Veer C.; van Heerde W. L.; Beens M. C. J.; Kuijpers B. H. M.; et al. Solid-Phase Synthesis of Caged Luminescent Peptides via Side Chain Anchoring. Bioconjugate Chem. 2023, 34 (12), 2234–2242. 10.1021/acs.bioconjchem.3c00381. PubMed DOI PMC
Sinnokrot M. O.; Sherrill C. D. Substituent Effects in π–π Interactions: Sandwich and T-Shaped Configurations. J. Am. Chem. Soc. 2004, 126 (24), 7690–7697. 10.1021/ja049434a. PubMed DOI
Pecina A.; Fanfrlík J.; Lepšík M.; Řezáč J. SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. Nat. Commun. 2024, 15 (1), 1127.10.1038/s41467-024-45431-8. PubMed DOI PMC
Callebaut C.; Stray K.; Tsai L.; Williams M.; Yang Z. Y.; Cannizzaro C.; Leavitt S. A.; Liu X.; Wang K.; Murray B. P.; et al. In vitro characterization of GS-8374, a novel phosphonate-containing inhibitor of HIV-1 protease with a favorable resistance profile. Antimicrob. Agents Chemother. 2011, 55 (4), 1366–1376. 10.1128/AAC.01183-10. PubMed DOI PMC
Sprouffske K.; Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinf. 2016, 17, 172.10.1186/s12859-016-1016-7. PubMed DOI PMC
Hradilek M.; Rinnová M.; Bařinka C.; Souček M.; Konvalinka J.. Analysis of substrate specificity of HIV protease species. Peptides for the New Millennium: Proceedings of the 16th American Peptide Symposium June 26–July 1, 1999, Minneapolis, Minnesota, U.S.A.; Fields G. B., Tam J. P.; Barany G., Eds.; Springer: Netherlands, 2002, pp 474–475.
Perfect J. R.; Dismukes W. E.; Dromer F.; Goldman D. L.; Graybill J. R.; Hamill R. J.; Harrison T. S.; Larsen R. A.; Lortholary O.; Nguyen M.-H.; et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50 (3), 291–322. 10.1086/649858. PubMed DOI PMC
Li Y.; Chadwick B.; Pham T.; Xie X.; Lin X. Aspartyl peptidase May1 induces host inflammatory response by altering cell wall composition in the fungal pathogen Cryptococcus neoformans. mBio 2024, 15 (6), e009202410.1128/mbio.00920-24. PubMed DOI PMC
Upadhya R.; Lam W. C.; Hole C. R.; Vasselli J. G.; Lodge J. K. Cell wall composition in Cryptococcus neoformans is media dependent and alters host response, inducing protective immunity. Front. Fungal Biol. 2023, 4, 1183291.10.3389/ffunb.2023.1183291. PubMed DOI PMC
Holzman T. F.; Chung C. C.; Edalji R.; Egan D. A.; Gubbins E. J.; Rueter A.; Howard G.; Yang L. K.; Pederson T. M.; Krafft G. A.; et al. Recombinant human prorenin from CHO cells: expression and purification. J. Protein Chem. 1990, 9 (6), 663–672. 10.1007/BF01024761. PubMed DOI
Gray S. P.; Billings J. A. Kinetic assay of human pepsin with albumin-bromphenol blue as substrate. Clin. Chem. 1983, 29 (3), 447–451. 10.1093/clinchem/29.3.447. PubMed DOI
Yasuda Y.; Kageyama T.; Akamine A.; Shibata M.; Kominami E.; Uchiyama Y.; Yamamoto K. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem. 1999, 125 (6), 1137–1143. 10.1093/oxfordjournals.jbchem.a022396. PubMed DOI
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 133–144. 10.1107/S0907444909047374. PubMed DOI PMC
Vagin A.; Teplyakov A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 1997, 30, 1022–1025. 10.1107/S0021889897006766. DOI
Vagin A. A.; Steiner R. A.; Lebedev A. A.; Potterton L.; McNicholas S.; Long F.; Murshudov G. N. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2184–2195. 10.1107/S0907444904023510. PubMed DOI
Laskowski R. A.; Swindells M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. 10.1021/ci200227u. PubMed DOI
Bietz S.; Urbaczek S.; Schulz B.; Rarey M. Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J. Cheminf. 2014, 6 (1), 12.10.1186/1758-2946-6-12. PubMed DOI PMC
Madhavi Sastry G.; Adzhigirey M.; Day T.; Annabhimoju R.; Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27 (3), 221–234. 10.1007/s10822-013-9644-8. PubMed DOI
Kříž K.; Řezáč J. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. J. Chem. Inf. Model. 2019, 59 (1), 229–235. 10.1021/acs.jcim.8b00681. PubMed DOI
Řezáč J.; Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8 (1), 141–151. 10.1021/ct200751e. PubMed DOI
Stewart J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13 (12), 1173–1213. 10.1007/s00894-007-0233-4. PubMed DOI PMC
Zhang Y.; Huo M.; Zhou J.; Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99 (3), 306–314. 10.1016/j.cmpb.2010.01.007. PubMed DOI
Gabriel S. Ueber eine Darstellungsweise primärer Amine aus den entsprechenden Halogenverbindungen. Ber. Dtsch. Chem. Ges. 1887, 20 (2), 2224–2236. 10.1002/cber.18870200227. DOI
Vozdvizhenskaya O. A.; Andronova V. L.; Galegov G. A.; Levit G. L.; Krasnov V. P.; Charushin V. N. Synthesis and antiherpetic activity of novel purine conjugates with 7,8-difluoro-3-methyl-3,4-dihydro-2H-1,4-benzoxazine. Chem. Heterocycl. Compd. 2021, 57 (4), 490–497. 10.1007/s10593-021-02929-z. DOI
Batch LCMS Processing Tool for Mnova MSChrom. https://github.com/robinkrystufek/LCMSbatch (accessed April 1, 2025).
Baell J. B.; Holloway G. A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53 (7), 2719–2740. 10.1021/jm901137j. PubMed DOI