Re-emerging Aspartic Protease Targets: Examining Cryptococcus neoformans Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery

. 2021 May 27 ; 64 (10) : 6706-6719. [epub] 20210518

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34006103

Grantová podpora
F32 AI152270 NIAID NIH HHS - United States
R01 AI100272 NIAID NIH HHS - United States
T32 HL007185 NHLBI NIH HHS - United States
P50 GM082250 NIGMS NIH HHS - United States

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.

Zobrazit více v PubMed

Kwon-Chung K. J.; Boekhout T.; Wickes B. L.; Fell J. W.. Systematics of the Genus Cryptococcus and its Type Species C. Neoformans. Cryptococcus; ASM Press, 2011; Vol. 1; pp 3–15.

Chang C. C.; Crane M.; Zhou J.; Mina M.; Post J. J.; Cameron B. A.; Lloyd A. R.; Jaworowski A.; French M. A.; Lewin S. R. HIV and Co-infections. Immunol. Rev. 2013, 254, 114–142. 10.1111/imr.12063. PubMed DOI PMC

Jarvis J. N.; Harrison T. S. HIV-associated Cryptococcal Meningitis. AIDS 2007, 21, 2119–2129. 10.1097/qad.0b013e3282a4a64d. PubMed DOI

Velagapudi R.; Hsueh Y.-P.; Geunes-Boyer S.; Wright J. R.; Heitman J. Spores as Infectious Propagules of Cryptococcus Neoformans. Infect. Immun. 2009, 77, 4345–4355. 10.1128/iai.00542-09. PubMed DOI PMC

Thompson H. I. Not Your “Typical Patient”: Cryptococcal Meningitis in an Immunocompetent Patient. J. Neurosci. Nurs. 2005, 37, 144–148. 10.1097/01376517-200506000-00005. PubMed DOI PMC

Lui G.; Lee N.; Ip M.; Choi K. W.; Tso Y. K.; Lam E.; Chau S.; Lai R.; Cockram C. S. Cryptococcosis in Apparently Immunocompetent Patients. Q. J. Med. 2006, 99, 143–151. 10.1093/qjmed/hcl014. PubMed DOI

Pappas P. G. Cryptococcal Infections in Non-HIV-infected Patients. Trans. Am. Clin. Climatol. Assoc. 2013, 124, 61–79. PubMed PMC

Rajasingham R.; Smith R. M.; Park B. J.; Jarvis J. N.; Govender N. P.; Chiller T. M.; Denning D. W.; Loyse A.; Boulware D. R. Global Burden of Disease of HIV-associated Cryptococcal Meningitis: an Updated Analysis. Lancet Infect. Dis. 2017, 17, 873–881. 10.1016/s1473-3099(17)30243-8. PubMed DOI PMC

Armstrong-James D.; Meintjes G.; Brown G. D. A Neglected Epidemic: Fungal Infections in HIV/AIDS. Trends Microbiol. 2014, 22, 120–127. 10.1016/j.tim.2014.01.001. PubMed DOI

World Health Organization . Guidelines for the Diagnosis, Prevention and Management of Cryptococcal Disease in HIV-Infected Adults, Adolescents and Children: Supplement to the 2016 Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection; World Health Organization: Geneva, 2018. PubMed

Fluconazole Injection Current Drug Shortages. https://www.ashp.org/Drug-Shortages/Current-Shortages/Drug-Shortage-Detail.aspx?id=318 (accessed Mar 19, 2021).

Sloan D. J.; Dedicoat M. J.; Lalloo D. G. Treatment of Cryptococcal Meningitis in Resource Limited Settings. Curr. Opin. Infect. Dis. 2009, 22, 455–463. 10.1097/qco.0b013e32832fa214. PubMed DOI PMC

Wiederhold N. P. Antifungal Resistance: Current Trends and Future Strategies to Combat. Infect. Drug Resist. 2017, 10, 249–259. 10.2147/idr.s124918. PubMed DOI PMC

Robbins N.; Caplan T.; Cowen L. E. Molecular Evolution of Antifungal Drug Resistance. Annu. Rev. Microbiol. 2017, 71, 753–775. 10.1146/annurev-micro-030117-020345. PubMed DOI

Joseph-Horne T.; Loeffler R. S. T.; Hollomon D. W.; Kelly S. L. Amphotericin B resistant isolates ofCryptococcus neoformanswithout alteration in sterol biosynthesis. J. Med. Vet. Mycol. 1996, 34, 223–225. 10.1080/02681219680000381. PubMed DOI

Loyse A.; Dromer F.; Day J.; Lortholary O.; Harrison T. S. Flucytosine and Cryptococcosis: Time to Urgently Address the Worldwide Accessibility of a 50-year-old Antifungal. J. Antimicrob. Chemother. 2013, 68, 2435–2444. 10.1093/jac/dkt221. PubMed DOI PMC

Chen Y.-C.; Chang T.-Y.; Liu J.-W.; Chen F.-J.; Chien C.-C.; Lee C.-H.; Lu C.-H. Increasing Trend of Fluconazole-non-susceptible Cryptococcus Neoformans in Patients with Invasive Cryptococcosis: a 12-year Longitudinal Study. BMC Infect. Dis. 2015, 15, 277.10.1186/s12879-015-1023-8. PubMed DOI PMC

Sanglard D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3, 11.10.3389/fmed.2016.00011. PubMed DOI PMC

Scorzoni L.; de Paula E Silva A. C. A.; Marcos C. M.; Assato P. A.; de Melo W. C. M. A.; de Oliveira H. C.; Costa-Orlandi C. B.; Mendes-Giannini M. J. S.; Fusco-Almeida A. M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol. 2017, 08, 36.10.3389/fmicb.2017.00036. PubMed DOI PMC

Nakanjako D.; Colebunders R.; Coutinho A. G.; Kamya M. R. Strategies to Optimize HIV Treatment Outcomes in Resource-limited Settings. AIDS Rev. 2009, 11, 179–189. PubMed

Hogan L. H.; Klein B. S.; Levitz S. M. Virulence Factors of Medically Important Fungi. Clin. Microbiol. Rev. 1996, 9, 469–488. 10.1128/cmr.9.4.469. PubMed DOI PMC

Mandujano-González V.; Villa-Tanaca L.; Anducho-Reyes M. A.; Mercado-Flores Y. Secreted Fungal Aspartic Proteases: A review. Rev. Iberoam. Micol. 2016, 33, 76–82. 10.1016/j.riam.2015.10.003. PubMed DOI

Clarke S. C.; Dumesic P. A.; Homer C. M.; O’Donoghue A. J.; La Greca F.; Pallova L.; Majer P.; Madhani H. D.; Craik C. S. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus Neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog. 2016, 12, e100605110.1371/journal.ppat.1006051. PubMed DOI PMC

Pinti M.; Orsi C. F.; Gibellini L.; Esposito R.; Cossarizza A.; Blasi E.; Peppoloni S.; Mussini C. Identification and characterization of an aspartyl protease fromCryptococcus neoformans. FEBS Lett. 2007, 581, 3882–3886. 10.1016/j.febslet.2007.07.006. PubMed DOI

Sidrim J. J. C.; Perdigão-Neto L. V.; Cordeiro R. A.; Brilhante R. S. N.; Leite J. J. G.; Teixeira C. E. C.; Monteiro A. J.; Freitas R. M. F.; Ribeiro J. F.; Mesquita J. R. L.; Gonçalves M. V. F.; Rocha M. F. G. Viral Protease Inhibitors Affect the Production of Virulence Factors in Cryptococcus Neoformans. Can. J. Microbiol. 2012, 58, 932–936. 10.1139/w2012-075. PubMed DOI

Almeida F.; Wolf J. M.; Casadevall A. Virulence-Associated Enzymes of Cryptococcus Neoformans. Eukaryotic Cell 2015, 14, 1173–1185. 10.1128/ec.00103-15. PubMed DOI PMC

Casadevall A.; Coelho C.; Alanio A. Mechanisms of Cryptococcus Neoformans-mediated Host Damage. Front. Immunol. 2018, 9, 855.10.3389/fimmu.2018.00855. PubMed DOI PMC

Vu K.; Tham R.; Uhrig J. P.; Thompson G. R.; Na Pombejra S.; Jamklang M.; Bautos J. M.; Gelli A. Invasion of the Central Nervous System by Cryptococcus Neoformans Requires a Secreted Fungal Metalloprotease. mBio 2014, 5, e0110110.1128/mBio.01101-14. PubMed DOI PMC

Aoki S.; Ito-Kuwa S.; Nakamura K.; Kato J.; Ninomiya K.; Vidotto V. Extracellular proteolytic activity of Cryptococcus neoformans. Mycopathologia 1994, 128, 143–150. 10.1007/bf01138475. PubMed DOI

Chen L. C.; Blank E. S.; Casadevall A. Extracellular Proteinase Activity of Cryptococcus Neoformans. Clin. Diagn. Lab. Immunol. 1996, 3, 570–574. 10.1128/cdli.3.5.570-574.1996. PubMed DOI PMC

Blasi E.; Colombari B.; Francesca Orsi C.; Pinti M.; Troiano L.; Cossarizza A.; Esposito R.; Peppoloni S.; Mussini C.; Neglia R. The human immunodeficiency virus (HIV) protease inhibitor indinavir directly affects the opportunistic fungal pathogenCryptococcus neoformans. FEMS Immunol. Med. Microbiol. 2004, 42, 187–195. 10.1016/j.femsim.2004.05.001. PubMed DOI

Cassone A.; De Bernardis F.; Torosantucci A.; Tacconelli E.; Tumbarello M.; Cauda R. In Vitro and In Vivo Anticandidal Activity of Human Immunodeficiency Virus Protease Inhibitors. J. Infect. Dis. 1999, 180, 448–453. 10.1086/314871. PubMed DOI

Mussini C.; Pezzotti P.; Miro J. M.; Martinez E.; de Quiros J. C. L. B.; Cinque P.; Borghi V.; Bedini A.; Domingo P.; Cahn P.; Bossi P.; de Luca A.; d’Arminio Monforte A.; Nelson M.; Nwokolo N.; Helou S.; Negroni R.; Jacchetti G.; Antinori S.; Lazzarin A.; Cossarizza A.; Esposito R.; Antinori A.; Aberg J. A. Discontinuation of Maintenance Therapy for Cryptococcal Meningitis in Patients with AIDS Treated with Highly Active Antiretroviral Therapy: an International Observational Study. Clin. Infect. Dis. 2004, 38, 565–571. 10.1086/381261. PubMed DOI

Santos A. L. S.; Braga-Silva L. A. Aspartic Protease Inhibitors: Effective Drugs Against the Human Fungal Pathogen Candida Albicans. Mini-Rev. Med. Chem. 2013, 13, 155–162. PubMed

Sigrist C. J. A.; Cerutti L.; Hulo N.; Gattiker A.; Falquet L.; Pagni M.; Bairoch A.; Bucher P. PROSITE: a Documented Database Using Patterns and Profiles as Motif Descriptors. Briefings Bioinf. 2002, 3, 265–274. 10.1093/bib/3.3.265. PubMed DOI

Petersen T. N.; Brunak S.; von Heijne G.; Nielsen H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. 10.1038/nmeth.1701. PubMed DOI

Dunn B. M. Structure and Mechanism of the Pepsin-like Family of Aspartic Peptidases. Chem. Rev. 2002, 102, 4431–4458. 10.1021/cr010167q. PubMed DOI

Lu D.-Y.; Wu H.-Y.; Yarla N. S.; Xu B.; Ding J.; Lu T.-R. HAART in HIV/AIDS Treatments: Future Trends. Infect. Disord.: Drug Targets 2018, 18, 15–22. 10.2174/1871526517666170505122800. PubMed DOI

Alteri E.; Bold G.; Cozens R.; Faessler A.; Klimkait T.; Lang M.; Lazdins J.; Poncioni B.; Roesel J. L.; Schneider P. CGP 53437, an Orally Bioavailable Inhibitor of Human Immunodeficiency Virus Type 1 Protease with Potent Antiviral Activity. Antimicrob. Agents Chemother. 1993, 37, 2087–2092. 10.1128/aac.37.10.2087. PubMed DOI PMC

Callebaut C.; Stray K.; Tsai L.; Williams M.; Yang Z.-Y.; Cannizzaro C.; Leavitt S. A.; Liu X.; Wang K.; Murray B. P.; Mulato A.; Hatada M.; Priskich T.; Parkin N.; Swaminathan S.; Lee W.; He G.-X.; Xu L.; Cihlar T. In Vitro Characterization of GS-8374, a Novel Phosphonate-Containing Inhibitor of HIV-1 Protease with a Favorable Resistance Profile. Antimicrob. Agents Chemother. 2011, 55, 1366–1376. 10.1128/aac.01183-10. PubMed DOI PMC

Hazen R.; Harvey R.; Ferris R.; Craig C.; Yates P.; Griffin P.; Miller J.; Kaldor I.; Ray J.; Samano V.; Furfine E.; Spaltenstein A.; Hale M.; Tung R.; St. Clair M.; Hanlon M.; Boone L. In Vitro Antiviral Activity of the Novel, Tyrosyl-Based Human Immunodeficiency Virus (HIV) Type 1 Protease Inhibitor Brecanavir (GW640385) in Combination with Other Antiretrovirals and against a Panel of Protease Inhibitor-Resistant HIV. Antimicrob. Agents Chemother. 2007, 51, 3147–3154. 10.1128/aac.00401-07. PubMed DOI PMC

Sielecki A. R.; Hayakawa K.; Fujinaga M.; Murphy M.; Fraser M.; Muir A.; Carilli C.; Lewicki J.; Baxter J.; James M. Structure of Recombinant Human Renin, a Target for Cardiovascular-active Drugs, at 2.5 A resolution. Science 1989, 243, 1346–1351. 10.1126/science.2493678. PubMed DOI

James M. N. G.; Sielecki A. R.. Aspartic Proteinases and their Catalytic Pathway. In Biological Macromolecules and Assemblies, Vol. 3 Active Sites of Enzymes; Jurnak F. A., McPherson A., Eds.; Wiley: New York, 1987; pp 413–482.

Tang J.; James M. N. G.; Hsu I. N.; Jenkins J. A.; Blundell T. L. Structural Evidence for Gene Duplication in the Evolution of the Acid Proteases. Nature 1978, 271, 618–621. 10.1038/271618a0. PubMed DOI

Blundell T. L.; Sewell B. T.; McLachlan A. D. Four-fold Structural Repeat in the Acid Proteases. Biochim. Biophys. Acta 1979, 580, 24–31. 10.1016/0005-2795(79)90194-6. PubMed DOI

James M. N. G.; Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 Å resolution. J. Mol. Biol. 1983, 163, 299–361. 10.1016/0022-2836(83)90008-6. PubMed DOI

Holm L.; Rosenström P. Dali Server: Conservation Mapping in 3D. Nucleic Acids Res. 2010, 38, W545–W549. 10.1093/nar/gkq366. PubMed DOI PMC

Holm L.; Laakso L. M. Dali Server Update. Nucleic Acids Res. 2016, 44, 351–355. 10.1093/nar/gkw357. PubMed DOI PMC

Navia M. A.; Fitzgerald P. M. D.; McKeever B. M.; Leu C.-T.; Heimbach J. C.; Herber W. K.; Sigal I. S.; Darke P. L.; Springer J. P. Three-dimensional Structure of Aspartyl Protease from Human Immunodeficiency Virus HIV-1. Nature 1989, 337, 615–620. 10.1038/337615a0. PubMed DOI

Laskowski R. A.; Swindells M. B. LigPlot+: Multiple Ligand-protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. 10.1021/ci200227u. PubMed DOI

Barrett A. J.; Rawlings N. D.; Woessner J. F.. Handbook of Proteolytic Enzymes; Elsevier Academic Press: Amsterdam, 2004.

Mimoto T.; Imai J.; Tanaka S.; Hattori N.; Kisanuki S.; Akaji K.; Kiso Y. KNI-102, a Novel Tripeptide HIV Protease Inhibitor Containing Allophenylnorstatine as a Transition-state Mimic. Chem. Pharm. Bull. 1991, 39, 3088–3090. 10.1248/cpb.39.3088. PubMed DOI

Hradilek M.; Rinnová M.; Bařinka C.; Souček M.; Konvalinka J.. Analysis of Substrate Specificity of HIV Protease Species. In Peptides for the New Millennium: Proceedings of the 16th American Peptide Symposium June 26–July 1, 1999, Minneapolis, Minnesota, U.S.A.; Fields G. B., Tam J. P., Barany G., Eds.; Springer Netherlands: Dordrecht, 2002; pp 474–475.

Dreyer G. B.; Metcalf B. W.; Tomaszek T. A.; Carr T. J.; Chandler A. C.; Hyland L.; Fakhoury S. A.; Magaard V. W.; Moore M. L.; Strickler J. E. Inhibition of Human Immunodeficiency Virus 1 Protease In Vitro: Rational Design of Substrate Analogue Inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 9752–9756. 10.1073/pnas.86.24.9752. PubMed DOI PMC

Urban J.; Konvalinka J.; Stehliková J.; Gregorová E.; Majer P.; Souček M.; Andreánsky M.; Fábrys M.; Štrop P. Reduced-bond Tight-binding Inhibitors of HIV-1 Protease Fine Tuning of the Enzyme Subsite Specificity. FEBS Lett. 1992, 298, 9–13. 10.1016/0014-5793(92)80010-e. PubMed DOI

Rich D. H.; Prasad J. V. N. V.; Sun C. Q.; Green J.; Mueller R.; Houseman K.; MacKenzie D.; Malkovsky M. New Hydroxyethylamine HIV Protease Inhibitors that Suppress Viral Replication. J. Med. Chem. 1992, 35, 3803–3812. 10.1021/jm00099a008. PubMed DOI

Rinnová M.; Hradilek M.; Bařinka C.; Weber J.; Souček M.; Vondrášek J.; Klimkait T.; Konvalinka J. A Picomolar Inhibitor of Resistant Strains of Human Immunodeficiency Virus Protease Identified by a Combinatorial Approach. Arch. Biochem. Biophys. 2000, 382, 22–30. 10.1006/abbi.2000.2017. PubMed DOI

Hradilek M.; Rinnova M.; Barinka C.; Souček M.; Konvalinka J. Synthesis of Library of HIV Proteases Inhibitors. Collect. Symp. Ser. 1999, 3, 79–81. 10.1135/css199903079. DOI

Cooper J.; Foundling S.; Hemmings A.; Blundell T.; Jones D. M.; Hallett A.; Szelke M. The Structure of a Synthetic Pepsin Inhibitor Complexed with Endothiapepsin. Eur. J. Biochem. 1987, 169, 215–221. 10.1111/j.1432-1033.1987.tb13600.x. PubMed DOI

Yang J.; Quail J. W. Structure of theRhizomucor mieheiaspartic proteinase complexed with the inhibitor pepstatin A at 2.7 Å resolution. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1999, 55, 625–630. 10.1107/s0907444998013961. PubMed DOI

Borelli C.; Ruge E.; Lee J. H.; Schaller M.; Vogelsang A.; Monod M.; Korting H. C.; Huber R.; Maskos K. X-ray structures of Sap1 and Sap5: Structural Comparison of the Secreted Aspartic Proteinases from Candida Albicans. Proteins 2008, 72, 1308–1319. 10.1002/prot.22021. PubMed DOI

Fitzgerald P. M.; McKeever B. M.; VanMiddlesworth J. F.; Springer J. P.; Heimbach J. C.; Leu C. T.; Herber W. K.; Dixon R. A.; Darke P. L. Crystallographic Analysis of a Complex Between Human Immunodeficiency Virus Type 1 Protease and Acetyl-pepstatin at 2.0-A Resolution. J. Biol. Chem. 1990, 265, 14209–14219. 10.1016/s0021-9258(18)77288-8. PubMed DOI

Rut W.; Poręba M.; Kasperkiewicz P.; Snipas S. J.; Drąg M. Selective Substrates and Activity-based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. J. Med. Chem. 2018, 61, 5222–5234. 10.1021/acs.jmedchem.8b00026. PubMed DOI

Poreba M.; Solberg R.; Rut W.; Lunde N. N.; Kasperkiewicz P.; Snipas S. J.; Mihelic M.; Turk D.; Turk B.; Salvesen G. S.; Drag M. Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chem. Biol. 2016, 23, 1023–1035. 10.1016/j.chembiol.2016.05.020. PubMed DOI PMC

Kay J.; Dunn B. M. Substrate Specificity and Inhibitors of Aspartic Proteinases. Scand. J. Clin. Lab. Invest. 1992, 52, 23–30. 10.3109/00365519209104651. PubMed DOI

Lu P.; Takai K.; Weaver V. M.; Werb Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspect. Biol. 2011, 3, a005058.10.1101/cshperspect.a005058. PubMed DOI PMC

Majer P.; Urban J.; Gregorová E.; Konvalinka J.; Novek P.; Stehlíková J.; Andreánsky M.; Sedlácek J.; Strop P. Specificity Mapping of HIV-1 Protease by Reduced Bond Inhibitors. Arch. Biochem. Biophys. 1993, 304, 1–8. 10.1006/abbi.1993.1314. PubMed DOI

Houštecká R.; Hadzima M.; Fanfrlík J.; Brynda J.; Pallová L.; Hánová I.; Mertlíková-Kaiserová H.; Lepšík M.; Horn M.; Smrčina M.; Majer P.; Mareš M. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure–Activity Relationship and Binding Mode Analysis. J. Med. Chem. 2020, 63, 1576–1596. 10.1021/acs.jmedchem.9b01351. PubMed DOI

Webb R. L.; Schiering N.; Sedrani R.; Maibaum J. Direct Renin Inhibitors as a New Therapy for Hypertension. J. Med. Chem. 2010, 53, 7490–7520. 10.1021/jm901885s. PubMed DOI

Tykvart J.; Šácha P.; Bařinka C.; Knedlík T.; Starková J.; Lubkowski J.; Konvalinka J. Efficient and Versatile One-step Affinity Purification of In Vivo Biotinylated Proteins: Expression, Characterization and Structure Analysis of Recombinant Human Glutamate Carboxypeptidase II. Protein Expression Purif. 2012, 82, 106–115. 10.1016/j.pep.2011.11.016. PubMed DOI PMC

Yung-Chi C.; Prusoff W. H. Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor which Causes 50 per cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. 10.1016/0006-2952(73)90196-2. PubMed DOI

Britton H. T. S.; Robinson R. A. CXCVIII.-Universal Buffer Solutions and the Dissociation Constant of Veronal. J. Chem. Soc. 1931, 1456–1462. 10.1039/jr9310001456. DOI

Gray S. P.; Billings J. A. Kinetic Assay of Human Pepsin with Albumin-bromphenol Blue as Substrate. Clin. Chem. 1983, 29, 447–451. 10.1093/clinchem/29.3.447. PubMed DOI

Holzman T. F.; Chung C. C.; Edalji R.; Egan D. A.; Gubbins E. J.; Rueter A.; Howard G.; Yang L. K.; Pederson T. M.; Krafft G. A.; Wang G. T. Recombinant Human Prorenin from CHO Cells: Expression and Purification. J. Protein Chem. 1990, 9, 663–672. 10.1007/bf01024761. PubMed DOI

Yasuda Y.; Kageyama T.; Akamine A.; Shibata M.; Kominami E.; Uchiyama Y.; Yamamoto K. Characterization of New Fluorogenic Substrates for the Rapid and Sensitive Assay of Cathepsin E and Cathepsin D. J. Biochem. 1999, 125, 1137–1143. 10.1093/oxfordjournals.jbchem.a022396. PubMed DOI

Gerlach M.; Mueller U.; Weiss M. S. The MX Beamlines BL14.1-3 at BESSY II. J. Large-scale Res. Facil. 2016, 2, 47.10.17815/jlsrf-2-64. DOI

Kabsch W. Integration, Scaling, Space-group Assignment and Post-refinement. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 133–144. 10.1107/s0907444909047374. PubMed DOI PMC

Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G. W.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of theCCP4 suite and current developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 235–242. 10.1107/s0907444910045749. PubMed DOI PMC

Vagin A.; Teplyakov A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. Crystallogr. 1997, 30, 1022–1025. 10.1107/s0021889897006766. DOI

Vagin A. A.; Steiner R. A.; Lebedev A. A.; Potterton L.; McNicholas S.; Long F.; Murshudov G. N. REFMAC5 Dictionary: Organization of Prior Chemical Knowledge and Guidelines for its Use. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2184–2195. 10.1107/s0907444904023510. PubMed DOI

Poreba M.; Szalek A.; Rut W.; Kasperkiewicz P.; Rutkowska-Wlodarczyk I.; Snipas S. J.; Itoh Y.; Turk D.; Turk B.; Overall C. M.; Kaczmarek L.; Salvesen G. S.; Drag M. Highly Sensitive and Adaptable Fluorescence-quenched Pair Discloses the Substrate Specificity Profiles in Diverse Protease Families. Sci. Rep. 2017, 7, 43135.10.1038/srep43135. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advances in Antifungal Drug Development: An Up-To-Date Mini Review

. 2021 Dec 16 ; 14 (12) : . [epub] 20211216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...