Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36945777
PubMed Central
PMC10147828
DOI
10.1016/j.bpj.2023.03.026
PII: S0006-3495(23)00199-6
Knihovny.cz E-zdroje
- MeSH
- anionty MeSH
- chloridy * chemie MeSH
- elektronika MeSH
- rodopsin * MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anionty MeSH
- chloridy * MeSH
- rodopsin * MeSH
The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.
Department of Biochemistry University of Oxford Oxford UK
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague 6 Czech Republic
Zobrazit více v PubMed
Skitchenko R.K., Usoltsev D., et al. Guskov A. Census of halide-binding sites in protein structures. Bioinformatics. 2020;36:3064–3071. PubMed PMC
Gouaux E., Mackinnon R. Principles of selective ion transport in channels and pumps. Science. 2005;310:1461–1465. PubMed
Hille B. 3rd ed. Sinauer Associates Inc; 2001. Ionic Channels of Excitable Membranes.
Dutzler R., Campbell E.B., Mackinnon R. Gating the selectivity filter in ClC chloride channels. Science. 2003;300:108–112. PubMed
Ashcroft F. Academic Press; San Diego: 2000. Ion Channels and Disease.
Garrett B.C. Ions at the air/water interface. Science. 2004;303:1146–1147. PubMed
Klesse G., Rao S., et al. Sansom M.S.P. Induced polarization in molecular dynamics simulations of the 5-HT3 receptor channel. J. Am. Chem. Soc. 2020;142:9415–9427. PubMed PMC
Petersen P.B., Saykally R.J. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 2006;57:333–364. PubMed
Phan L.X., Lynch C.I., et al. Tucker S.J. Influence of effective polarization on ion and water interactions within a biomimetic nanopore. Biophys. J. 2022;121:2014–2026. PubMed PMC
Bajaj P., Riera M., et al. Paesani F. Halide ion microhydration: structure, energetics, and spectroscopy of small halide-water clusters. J. Phys. Chem. A. 2019;123:2843–2852. PubMed
Piatkowski L., Zhang Z., et al. Bonn M. Extreme surface propensity of halide ions in water. Nat. Commun. 2014;5:4083. PubMed
Petersen P.B., Saykally R.J. Probing the interfacial structure of aqueous electrolytes with femtosecond second harmonic generation spectroscopy. J. Phys. Chem. B. 2006;110:14060–14073. PubMed
Linsdell P. Anion conductance selectivity mechanism of the CFTR chloride channel. Biochim. Biophys. Acta. 2016;1858:740–747. PubMed
Jojoa-Cruz S., Saotome K., et al. Ward A.B. Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. Nat. Commun. 2022;13:850. PubMed PMC
Ravera S., Nicola J.P., Carrasco N., et al. Structural insights into the mechanism of the sodium/iodide symporter (NIS) Nature. 2022;612:795–801. PubMed PMC
Kim K., Kwon S.K., et al. Cho H.S. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat. Commun. 2016;7:12677. PubMed PMC
Lopes P.E.M., Roux B., MacKerell A.D. Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theor. Chem. Acc. 2009;124:11–28. PubMed PMC
Orabi E.A., Öztürk T.N., et al. Faraldo-Gómez J.D. Corrections in the CHARMM36 parametrization of chloride interactions with proteins, lipids, and alkali cations, and extension to other halide anions. J. Chem. Theory Comput. 2021;17:6240–6261. PubMed
Chen S., Voth G.A. How does electronic polarizability or scaled-charge affect the interfacial properties of room temperature ionic liquids? J. Phys. Chem. B. 2023;127:1264–1275. PubMed PMC
Nencini R., Tempra C., et al. Martinez-Seara H. Prosecco: polarization reintroduced by optimal scaling of electronic continuum correction origin in MD simulations. Biophys. J. 2022;121:157a. PubMed
Leontyev I.v., Stuchebrukhov A.A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009;130:085102. PubMed PMC
Duboue-Dijon E., Javanainen M., et al. Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020;153:1–15. PubMed
Pluhařová E., Fischer H.E., et al. Jungwirth P. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 2014;112:1230–1240.
Tolmachev D.A., Boyko O.S., Karttunen M., et al. Overbinding and qualitative and quantitative changes caused by simple Na+ and K+ ions in polyelectrolyte simulations: comparison of force fields with and without NBFIX and ECC corrections. J. Chem. Theory Comput. 2020;16:677–687. PubMed
Yun J.-H., Li X., et al. Liu H. Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser. Proc. Natl. Acad. Sci. USA. 2021;118 e2020486118. PubMed PMC
Lee J., Cheng X., et al. Im W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016;12:405–413. PubMed PMC
Brooks B.R., Brooks C.L., et al. Karplus M. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. PubMed PMC
Jo S., Kim T., et al. Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed
Best R.B., Zhu X., MacKerell A.D., et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 2012;8:3257–3273. PubMed PMC
Vazdar M., Pluhařová E., et al. Jungwirth P. Ions at hydrophobic aqueous interfaces: molecular dynamics with effective polarization. J. Phys. Chem. Lett. 2012;3:2087–2091.
Fuentes-Azcatl R., Mendoza N., Alejandre J. Improved SPC force field of water based on the dielectric constant: SPC/ε. Phys. Stat. Mech. Appl. 2015;420:116–123.
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. PubMed
Darden T., York D., Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.
Hess B., Bekker H., Fraaije J.G.E., et al. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472.
Abraham M.J., Murtola T., et al. Lindahl E. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
Gowers R.J., Linke M., et al. Beckstein O. Proc. of the 15th Python in Science Conference. 2016. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations; pp. 98–105.
Michaud-Agrawal N., Denning E.J., et al. Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. PubMed PMC
Shi Y., Xia Z., et al. Ren P. Polarizable atomic multipole-based AMOEBA force field for proteins. J. Chem. Theory Comput. 2013;9:4046–4063. PubMed PMC
Ren P., Ponder J.W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B. 2003;107:5933–5947.
Muralidharan A., Pratt L.R., Rempe S.B., et al. Quasi-chemical theory for anion hydration and specific ion effects: Cl-(aq) vs. F-(aq) Chem. Phys. Lett. 2019;737:100037.
Gomez D.T., Pratt L.R., et al. Rempe S.B. Hydrated anions: from clusters to bulk solution with quasi-chemical theory. Acc. Chem. Res. 2022;55:2201–2212. PubMed PMC
Huang J., Lopes P.E.M., et al. MacKerell A.D. Recent advances in polarizable force fields for macromolecules: microsecond simulations of proteins using the classical drude oscillator model. J. Phys. Chem. Lett. 2014;5:3144–3150. PubMed PMC
Owji A.P., Wang J., et al. Yang T. Structures and gating mechanisms of human bestrophin anion channels. Nat. Commun. 2022;13:3836. PubMed PMC