Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin

. 2023 Apr 18 ; 122 (8) : 1548-1556. [epub] 20230321

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36945777
Odkazy

PubMed 36945777
PubMed Central PMC10147828
DOI 10.1016/j.bpj.2023.03.026
PII: S0006-3495(23)00199-6
Knihovny.cz E-zdroje

The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.

Zobrazit více v PubMed

Skitchenko R.K., Usoltsev D., et al. Guskov A. Census of halide-binding sites in protein structures. Bioinformatics. 2020;36:3064–3071. PubMed PMC

Gouaux E., Mackinnon R. Principles of selective ion transport in channels and pumps. Science. 2005;310:1461–1465. PubMed

Hille B. 3rd ed. Sinauer Associates Inc; 2001. Ionic Channels of Excitable Membranes.

Dutzler R., Campbell E.B., Mackinnon R. Gating the selectivity filter in ClC chloride channels. Science. 2003;300:108–112. PubMed

Ashcroft F. Academic Press; San Diego: 2000. Ion Channels and Disease.

Garrett B.C. Ions at the air/water interface. Science. 2004;303:1146–1147. PubMed

Klesse G., Rao S., et al. Sansom M.S.P. Induced polarization in molecular dynamics simulations of the 5-HT3 receptor channel. J. Am. Chem. Soc. 2020;142:9415–9427. PubMed PMC

Petersen P.B., Saykally R.J. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 2006;57:333–364. PubMed

Phan L.X., Lynch C.I., et al. Tucker S.J. Influence of effective polarization on ion and water interactions within a biomimetic nanopore. Biophys. J. 2022;121:2014–2026. PubMed PMC

Bajaj P., Riera M., et al. Paesani F. Halide ion microhydration: structure, energetics, and spectroscopy of small halide-water clusters. J. Phys. Chem. A. 2019;123:2843–2852. PubMed

Piatkowski L., Zhang Z., et al. Bonn M. Extreme surface propensity of halide ions in water. Nat. Commun. 2014;5:4083. PubMed

Petersen P.B., Saykally R.J. Probing the interfacial structure of aqueous electrolytes with femtosecond second harmonic generation spectroscopy. J. Phys. Chem. B. 2006;110:14060–14073. PubMed

Linsdell P. Anion conductance selectivity mechanism of the CFTR chloride channel. Biochim. Biophys. Acta. 2016;1858:740–747. PubMed

Jojoa-Cruz S., Saotome K., et al. Ward A.B. Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. Nat. Commun. 2022;13:850. PubMed PMC

Ravera S., Nicola J.P., Carrasco N., et al. Structural insights into the mechanism of the sodium/iodide symporter (NIS) Nature. 2022;612:795–801. PubMed PMC

Kim K., Kwon S.K., et al. Cho H.S. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat. Commun. 2016;7:12677. PubMed PMC

Lopes P.E.M., Roux B., MacKerell A.D. Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theor. Chem. Acc. 2009;124:11–28. PubMed PMC

Orabi E.A., Öztürk T.N., et al. Faraldo-Gómez J.D. Corrections in the CHARMM36 parametrization of chloride interactions with proteins, lipids, and alkali cations, and extension to other halide anions. J. Chem. Theory Comput. 2021;17:6240–6261. PubMed

Chen S., Voth G.A. How does electronic polarizability or scaled-charge affect the interfacial properties of room temperature ionic liquids? J. Phys. Chem. B. 2023;127:1264–1275. PubMed PMC

Nencini R., Tempra C., et al. Martinez-Seara H. Prosecco: polarization reintroduced by optimal scaling of electronic continuum correction origin in MD simulations. Biophys. J. 2022;121:157a. PubMed

Leontyev I.v., Stuchebrukhov A.A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009;130:085102. PubMed PMC

Duboue-Dijon E., Javanainen M., et al. Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020;153:1–15. PubMed

Pluhařová E., Fischer H.E., et al. Jungwirth P. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 2014;112:1230–1240.

Tolmachev D.A., Boyko O.S., Karttunen M., et al. Overbinding and qualitative and quantitative changes caused by simple Na+ and K+ ions in polyelectrolyte simulations: comparison of force fields with and without NBFIX and ECC corrections. J. Chem. Theory Comput. 2020;16:677–687. PubMed

Yun J.-H., Li X., et al. Liu H. Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser. Proc. Natl. Acad. Sci. USA. 2021;118 e2020486118. PubMed PMC

Lee J., Cheng X., et al. Im W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016;12:405–413. PubMed PMC

Brooks B.R., Brooks C.L., et al. Karplus M. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. PubMed PMC

Jo S., Kim T., et al. Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed

Best R.B., Zhu X., MacKerell A.D., et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 2012;8:3257–3273. PubMed PMC

Vazdar M., Pluhařová E., et al. Jungwirth P. Ions at hydrophobic aqueous interfaces: molecular dynamics with effective polarization. J. Phys. Chem. Lett. 2012;3:2087–2091.

Fuentes-Azcatl R., Mendoza N., Alejandre J. Improved SPC force field of water based on the dielectric constant: SPC/ε. Phys. Stat. Mech. Appl. 2015;420:116–123.

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. PubMed

Darden T., York D., Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.

Hess B., Bekker H., Fraaije J.G.E., et al. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472.

Abraham M.J., Murtola T., et al. Lindahl E. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Gowers R.J., Linke M., et al. Beckstein O. Proc. of the 15th Python in Science Conference. 2016. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations; pp. 98–105.

Michaud-Agrawal N., Denning E.J., et al. Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. PubMed PMC

Shi Y., Xia Z., et al. Ren P. Polarizable atomic multipole-based AMOEBA force field for proteins. J. Chem. Theory Comput. 2013;9:4046–4063. PubMed PMC

Ren P., Ponder J.W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B. 2003;107:5933–5947.

Muralidharan A., Pratt L.R., Rempe S.B., et al. Quasi-chemical theory for anion hydration and specific ion effects: Cl-(aq) vs. F-(aq) Chem. Phys. Lett. 2019;737:100037.

Gomez D.T., Pratt L.R., et al. Rempe S.B. Hydrated anions: from clusters to bulk solution with quasi-chemical theory. Acc. Chem. Res. 2022;55:2201–2212. PubMed PMC

Huang J., Lopes P.E.M., et al. MacKerell A.D. Recent advances in polarizable force fields for macromolecules: microsecond simulations of proteins using the classical drude oscillator model. J. Phys. Chem. Lett. 2014;5:3144–3150. PubMed PMC

Owji A.P., Wang J., et al. Yang T. Structures and gating mechanisms of human bestrophin anion channels. Nat. Commun. 2022;13:3836. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace