The nuclear receptor NHR-25 cooperates with the Wnt/beta-catenin asymmetry pathway to control differentiation of the T seam cell in C. elegans

. 2009 Sep 01 ; 122 (Pt 17) : 3051-60. [epub] 20090804

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19654209

Grantová podpora
GM56339 NIGMS NIH HHS - United States
P20RR016475 NCRR NIH HHS - United States

Asymmetric cell divisions produce new cell types during animal development. Studies in Caenorhabditis elegans have identified major signal-transduction pathways that determine the polarity of cell divisions. How these relatively few conserved pathways interact and what modulates them to ensure the diversity of multiple tissue types is an open question. The Wnt/beta-catenin asymmetry pathway governs polarity of the epidermal T seam cell in the C. elegans tail. Here, we show that the asymmetry of T-seam-cell division and morphogenesis of the male sensory rays require NHR-25, an evolutionarily conserved nuclear receptor. NHR-25 ensures the neural fate of the T-seam-cell descendants in cooperation with the Wnt/beta-catenin asymmetry pathway. Loss of NHR-25 enhances the impact of mutated nuclear effectors of this pathway, POP-1 (TCF) and SYS-1 (beta-catenin), on T-seam-cell polarity, whereas it suppresses the effect of the same mutations on asymmetric division of the somatic gonad precursor cells. Therefore, NHR-25 can either synergize with or antagonize the Wnt/beta-catenin asymmetry pathway depending on the tissue context. Our findings define NHR-25 as a versatile modulator of Wnt/beta-catenin-dependent cell-fate decisions.

Zobrazit více v PubMed

Asahina, M., Ishihara, T., Jindra, M., Kohara, Y., Katsura, I. and Hirose, S. (2000). The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans. Genes Cells 5, 711-723. PubMed

Asahina, M., Valenta, T., Silhankova, M., Korinek, V. and Jindra, M. (2006). Crosstalk between a nuclear receptor and β-catenin signaling decides cell fates in the C. elegans somatic gonad. Dev. Cell 11, 203-211. PubMed

Bae, Y. K., Qin, H., Knobel, K. M., Hu, J., Rosenbaum, J. L. and Barr, M. M. (2006). General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development 133, 3859-3870. PubMed

Baird, S. E., Fitch, D. H. A., Kassem, I. A. A. and Emmons, S. W. (1991). Pattern formation in the nematode epidermis: determination of the arrangement of peripheral sense organs in the C. elegans male tail. Development 113, 515-526. PubMed

Betschinger, J. and Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674-R685. PubMed

Botrugno, O. A., Fayard, E., Annicotte, J. S., Haby, C., Brennan, T., Wendling, O., Tanaka, T., Kodama, T., Thomas, W., Auwerx, J. et al. (2004). Synergy between LRH-1 and beta-catenin induces G(1) cyclin-mediated cell proliferation. Mol. Cell 15, 499-509. PubMed

Brenner, S. (1974). The genetics of C. elegans. Genetics 77, 71-94. PubMed PMC

Chen, Z., Eastburn, D. J. and Han, M. (2004). The Caenorhabditis elegans nuclear receptor gene nhr-25 regulates epidermal cell development. Mol. Cell. Biol. 24, 7345-7358. PubMed PMC

Chow, K. L. and Emmons, S. W. (1994). HOM-C/Hox genes and four interacting loci determine the morphogenetic properties of single cells in the nematode male tail. Development 120, 2579-2593. PubMed

Fujii, T., Nakao, F., Shibata, Y., Shioi, G., Kodama, E., Fujisawa, H. and Takagi, S. (2002). Caenorhabditis elegans plexinA, PLX-1, interacts with transmembrane semaphorins and regulates epidermal morphogenesis. Development 129, 2053-2063. PubMed

Ginzburg, V. E., Roy, P. J. and Culotti, J. G. (2002). Semaphorin 1a and semaphorin 1b are required for correct epidermal positioning and adhesion during morphogenesis in C. elegans. Development 129, 2065-2078. PubMed

Gissendanner, C. R. and Sluder, A. E. (2000). nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev. Biol. 221, 259-272. PubMed

Gönzy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355-366. PubMed

Gummow, B. M., Winnay, J. N. and Hammer, G. D. (2003). Convergence of Wnt signaling and steroidogenic factor-1 (SF-1) on transcription of the rat inhibin α gene. J. Biol. Chem. 278, 26572-26579. PubMed

Hedgecock, E. M., Culotti, J. G., Thomson, J. N. and Perkins, L. A. (1985). Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158-170. PubMed

Herman, M. A. (2001). C. elegans POP-1/TCF functions in a canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway that controls cell polarity. Development 128, 581-590. PubMed

Herman, M. A. (2002). Control of cell polarity by noncanonical Wnt signaling in C. elegans. Cell Dev. Biol. 13, 233-241. PubMed

Herman, M. A. and Horvitz, R. (1994). The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development 120, 1035-1047. PubMed

Herman, M. A. and Wu, M. (2004). Noncanonical Wnt signaling pathways in C. elegans converge on POP-1/TCF and control cell polarity. Front. Biosci 9, 1530-1539. PubMed

Hodgkin, J., Brenner, S. and Horvitz, B. (1979). Nondisjunction mutants of the nematode C. elegans. Genetics 91, 67-94. PubMed PMC

Hossain, A. and Saunders, G. F. (2003). Synergistic cooperation between the β-catenin signaling pathway and steroidogenic factor 1 in the activation of the Mullerian inhibiting substance type II receptor. J. Biol. Chem. 278, 26511-26516. PubMed

Hunter, C. P., Harris, J. M., Maloof, J. N. and Kenyon, C. (1999). Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit Wnt signaling. Development 126, 805-814. PubMed

Ji, Y. J., Nam, S., Jin, Y. H., Cha, E. J., Lee, K. S., Choi, K. Y., Song, H. O., Lee, J., Bae, S. C. and Ahnn, J. (2004). RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Dev. Biol. 274, 402-412. PubMed

Jordan, B. K., Shen, J. H. C., Olaso, R., Ingraham, H. A. and Vilain, E. (2003). Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesisby repressing SF-1/b-catenin synergy. Proc. Natl. Acad. Sci. USA 100, 10866-10871. PubMed PMC

Kagoshima, H., Sawa, H., Mitani, S., Burglin, T. R., Shigesada, K., Kohara, Y. (2005). The C. elegans RUNX transcription factor RNT-1/MAB-2 is required for asymmetrical cell division of the T blast cell. Dev. Biol. 287, 262-273. PubMed

Kagoshima, H., Shigesada, K. and Kohara, Y. (2007a). RUNX regulates stem cell proliferation and differentiation: insights from studies of C. elegans. J. Cell. Biochem. 100, 1119-1130. PubMed

Kagoshima, H., Nimmo, R., Saad, N., Tanaka, J., Miwa, Y., Mitani, S., Kohara, Y. and Woollard, A. (2007b). The C. elegans CBFβ homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development 134, 3905-3915. PubMed

Kaiser, U. B., Halvorson, L. M. and Chen, M. T. (2000). Sp1, steroidogenic factor 1 (SF-1) and early growth response protein 1 (Egr-1) binding sites form a tripartite gonadotropin-releasing hormone response element in the rat luteinizing hormone-β gene promoter: an integral role for SF-1. Mol. Endocrinol. 14, 1235-1245. PubMed

Kastner, P., Mark, M. and Chambon, P. (1995). Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859-869. PubMed

Kenyon, C. (1986). A gene involved in the development of the posterior body region of C. elegans. Cell 46, 477-487. PubMed

Kidd, A. R., 3rd, Miskowski, J. A., Siegfried, K. R., Sawa, H. and Kimble, J. (2005). A β-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell 121, 761-772. PubMed

Kim, K. and Li, C. (2004). Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475, 540-550. PubMed

Kimble, J. and Crittenden, S. L. (2007). Controls of germaline stem cells, entry to meiosis, and sperm/oocyte decision in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 23, 405-433. PubMed

Korswagen, H. C., Coudreuse, D. Y. M., Betist, M. C., van de Water, S., Zivkovic, D. and Clevers, H. C. (2002). The axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev. 15, 1291-1302. PubMed PMC

Lints, R., Jia, L., Kim, K., Li, C. and Emmons, S. W. (2004). Axial patterning of C. elegans male sensilla identities by selector genes. Dev. Biol. 269, 137-151. PubMed

Liu, Z. and Simpson, E. R. (1997). Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Mol. Endocrinol. 11, 127-137. PubMed

Maglich, J. M., Sluder, A., Guan, X., Shi, Y., McKee, D. D., Carrick, K., Kamdar, K., Willson, T. M. and Moore, J. T. (2001). Comparison of complete nuclear receptors sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol. 2, 29.1-29.7. PubMed PMC

Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. and Kenyon, C. (1999). A Wnt signaling pathway controls Hox gene expression and neuroblast migration in C. elegans. Development 126, 37-49. PubMed

Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. et al. (1995). The nuclear receptor superfamily: the second decade. Cell 83, 835-839. PubMed PMC

Mello, C. C., Kramer, J. M., Stinchcomb, D. and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970. PubMed PMC

Mizumoto, K. and Sawa, H. (2007a). Cortical β-catenin and APC regulate asymmetric nuclear β-catenin localization during asymmetric cell division in C. elegans. Dev. Cell 12, 287-299. PubMed

Mizumoto, K. and Sawa, H. (2007b). Two βs or not two βs: regulation of asymmetric divisions by β-catenin. Trends Cell Biol. 17, 465-473. PubMed

Mizusaki, H., Kawabe, K., Mukai, T., Ariyoshi, E., Kasahara, M., Yoshioka, H., Swain, A. and Morohashi, K. (2003). Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by Wnt4 in the female developing gonad. Mol. Endocrinol. 17, 507-519. PubMed

Mohler, W. A., Simske, J. S., Williams-Masson, E. M., Hardin, J. D. and White, J. G. (1998). Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087-1090. PubMed

Mulholland, D. J., Dedhar, S., Coetzee, G. A. and Nelson, C. C. (2005). Interaction of nuclear receptors with Wnt/beta-catenin/Tcf signaling: Wnt you like to know? Endocr. Rev. 26, 898-915. PubMed

Nimmo, R., Antebi, A. and Woollard, A. (2005). mab-2 encodes RNT-1, a C. elegans Runx homologue essential for controlling cell proliferation in a stem cell-like developmental lineage. Development 132, 5043-5054. PubMed

Nukazuka, A., Fujisawa, H., Inada, T., Oda, Y. and Takagi, S. (2008). Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2α in Caenorhabditis elegans. Genes Dev. 22, 1025-1036. PubMed PMC

Parakh, T. N., Hernandez, J. A., Grammer, J. C., Weck, J., Hunzicker-Dunn, M., Zeleznik, A. J. and Nilson, J. H. (2006). Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proc. Natl. Acad. Sci. USA 103, 12435-12440. PubMed PMC

Pickett, C. L., Breen, K. T. and Ayer, D. E. (2007). A C. elegans Myc-like network cooperates with semaphorin and Wnt signaling pathways to control cell migration. Dev. Biol. 310, 226-239. PubMed PMC

Roegiers, F. and Jan, Y. N. (2004). Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195-205. PubMed

Salisbury, T. B., Binder, A. K., Grammer, J. C. and Nilson, J. H. (2007). Maximal activity of the Luteinizing hormone β-subnunit gene requires β-catenin. Mol. Endocrinol. 21, 963-971. PubMed

Salser, S. J. and Kenyon, C. (1996). A C. elegans Hox gene switches on, off, on and off again to regulate proliferation, differentiation and morphogenesis. Development 122, 1651-1661. PubMed

Sawa, H., Kouike, H. and Okano, H. (2000). Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans. Mol. Cell 6, 617-624. PubMed

Siegfried, K. R. and Kimble, J. (2002). POP-1 controls axis formation during early gonadogenesis in C. elegans. Development 129, 443-453. PubMed

Siegfried, K. R., Kidd, A. R., 3rd, Chesney, M. A. and Kimble, J. (2004). The sys-1 and sys-3 genes cooperate with Wnt signaling to establish the proximal-distal axis of the Caenorhabditis elegans gonad. Genetics 166, 171-186. PubMed PMC

Silhankova, M., Jindra, M. and Asahina, M. (2005). Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans. J. Cell Sci. 118, 223-232. PubMed

Sluder, A. E., Mathews, S. W., Hough, D., Yin, V. P. and Maina, C. V. (1999). The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. Genome Res. 9, 103-120. PubMed

Sternberg, P. W. and Horvitz, H. R. (1988). lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. Dev. Biol. 130, 67-73. PubMed

Sugawara, T., Saito, M. and Fujimoto, S. (2000). Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression. Endocrinology 141, 2895-2903. PubMed

Sulston, J. E. and Horvitz, H. (1977). Post-embryonic cell lineages of the nematode, C. elegans. Dev. Biol. 56, 110-156. PubMed

Sulston, J. E., Schierenberg, E., White, J. G. and Thompson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64-119. PubMed

Sze, J. Y., Victor, M., Loer, C., Shi, Y. and Ruvkun, G. (2000). Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560-564. PubMed

Terns, R. M., Kroll-Conner, P., Zhu, J., Chung, S. and Rothman, J. H. (1997). A deficiency screen for zygotic loci required for for establishment and patterning of the epidermis in Caenorhabditis elegans. Genetics 146, 185-206. PubMed PMC

Timmons, L., Court, D. L. and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112. PubMed

Timmons, L., Tabara, H., Mello, C. C. and Fire, A. Z. (2003). Inducible systemic RNA silencing in Caenorhabditis elegans. Mol. Biol. Cell 14, 2972-2983. PubMed PMC

Xia, D., Zhang, Y., Huang, X., Sun, Y. and Zhang, H. (2007). The C. elegans CBF-β homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages. Dev. Biol. 309, 259-272. PubMed

Wu, M. and Herman, M. A. (2007). Asymmetric localizations of LIN-17/Fz and MIG-5/Dsh are involved in the asymmetric B cell division in C. elegans. Dev. Biol. 303, 650-662. PubMed PMC

Zahn, T. R., Macmorris, M. A., Dong, W., Day, R. and Hutton, J. C. (2001). IDA-1, a Caenorhabditis elegans homolog of the diabetic autoantigens IA-2 and phogrin, is expressed in peptidergic neurons in the worm. J. Comp. Neurol. 429, 127-143. PubMed

Zhao, X., Yang, Y., Fitch, D. H. A. and Herman, M. A. (2002). TLP-1 is an asymmetric cell fate determinant that responds to Wnt signals and controls male tail tip morphogenesis in C. elegans. Development 129, 1497-1508. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...