Molecular dynamics simulations unveil the aggregation patterns and salting out of polyarginines at zwitterionic POPC bilayers in solutions of various ionic strengths
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39559777
PubMed Central
PMC11570823
DOI
10.1016/j.csbj.2024.11.004
PII: S2001-0370(24)00375-1
Knihovny.cz E-zdroje
- Klíčová slova
- Ionic strength, Molecular dynamics simulations, Peptide aggregation, Phosphocholine lipid bilayers, Polyarginines, Salting-out,
- Publikační typ
- časopisecké články MeSH
This study employs molecular dynamics (MD) simulations to investigate the adsorption and aggregation behavior of simple polyarginine cell-penetrating peptides (CPPs), specifically modeled as R9 peptides, at zwitterionic phosphocholine POPC membranes under varying ionic strengths of two peptide concentrations and two concentrations of NaCl and CaCl2. The results reveal an intriguing phenomenon of R9 aggregation at the membrane, which is dependent on the ionic strength, indicating a salting-out effect. As the peptide concentration and ionic strength increase, peptide aggregation also increases, with aggregate lifetimes and sizes showing a corresponding rise, accompanied by the total decrease of adsorbed peptides at the membrane surface. Notably, in high ionic strength environments, large R9 aggregates, such as octamers, are also observed occasionally. The salting-out, typically uncommon for short positively charged peptides, is attributed to the unique properties of arginine amino acid, specifically by its side chain containing amphiphilic guanidinium (Gdm+) ion which makes both intermolecular hydrophobic like-charge Gdm+ - Gdm+ and salt-bridge Gdm+ - C-terminus interactions, where the former are increased with the ionic strength, and the latter decreased due to electrostatic screening. The aggregation behavior of R9 peptides at membranes can also be linked to their CPP translocation properties, suggesting that aggregation may aid in translocation across cellular membranes.
Zobrazit více v PubMed
J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, W.H. Freeman, New York NY, 5 ed., 4. print., 2002.
Coskun Ü., Simons K. Cell membranes: The lipid perspective. Structure. 2011;19:1543–1548. PubMed
Van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–124. PubMed PMC
Škulj S., Vazdar M. Calculation of apparent pKa values of saturated fatty acids with different lengths in DOPC phospholipid bilayers. Phys Chem Chem Phys. 2019;21:10052–10060. PubMed
Kamp F., Zakim D., Zhang F., Noy N., Hamilton J.A. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry. 1995;34:11928–11937. PubMed
Kumari S., Mg S., Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20:256–275. PubMed PMC
Mukherjee S., Ghosh R.N., Maxfield F.R. Endocytosis. Physiol Rev. 1997;77:759–803. PubMed
Richard J.P., Melikov K., Vives E., Ramos C., Verbeure B., Gait M.J., et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278:585–590. PubMed
Stanzl E.G., Trantow B.M., Vargas J.R., Wender P.A. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: Basic science, research tools, and clinical applications. Acc Chem Res. 2013;46:2944–2954. PubMed PMC
Schmidt N., Mishra A., Lai G.H., Wong G.C. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010;584:1806–1813. PubMed
Yang Y., Jalali S., Nilsson B.L., Dias C.L. Binding mechanisms of amyloid-like peptides to lipid bilayers and effects of divalent cations. ACS Chem Neurosci. 2021;12:2027–2035. PubMed
Yamasaki K., Daiho T., Yasuda S., Danko S., Kawabe J. ichi, Suzuki H. Electrostatic interactions between single arginine and phospholipids modulate physiological properties of sarcoplasmic reticulum Ca2+-ATPase. Sci Rep. 2022;12:1–12. PubMed PMC
Mitchell D.J., Kim D.T., Steinman L., Fathman C.G., Rothbard J.B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56:318–325. PubMed
Pokhrel N., Maibaum L. Free energy calculations of membrane permeation: challenges due to strong headgroup-solute interactions. J Chem Theory Comput. 2018;14:1762–1771. PubMed
Hub J.S., Awasthi N. Probing a continuous polar defect: a reaction coordinate for pore formation in lipid membranes. J Chem Theory Comput. 2017;13:2352–2366. PubMed
Awasthi N., Hub J.S. Simulations of pore formation in lipid membranes: reaction coordinates, convergence, hysteresis, and finite-size effects. J Chem Theory Comput. 2016;12:3261–3269. PubMed
Poojari C.S., Scherer K.C., Hub J.S. Free energies of membrane stalk formation from a lipidomics perspective. Nat Commun. 2021;12:6594. PubMed PMC
Ting C.L., Awasthi N., Müller M., Hub J.S. Metastable prepores in tension-free lipid bilayers. Phys Rev Lett. 2018;120 PubMed
Vazdar M., Heyda J., Mason P.E., Tesei G., Allolio C., Lund M., et al. Arginine ‘magic’: guanidinium like-charge ion pairing from aqueous salts to cell penetrating peptides. Acc Chem Res. 2018;51:1455–1464. PubMed
Vazdar M., Wernersson E., Khabiri M., Cwiklik L., Jurkiewicz P., Hof M., et al. Aggregation of oligoarginines at phospholipid membranes: molecular dynamics simulations, time-dependent fluorescence shift, and biomimetic colorimetric assays. J Phys Chem B. 2013;117:11530–11540. PubMed
Robison A.D., Sun S., Poyton M.F., Johnson G.A., Pellois J.P., Jungwirth P., et al. Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. J Phys Chem B. 2016;120:9287–9296. PubMed PMC
Nguyen M.T.H., Biriukov D., Tempra C., Baxova K., Martinez-Seara H., Evci H., et al. Ionic strength and solution composition dictate the adsorption of cell-penetrating peptides onto phosphatidylcholine membranes. Langmuir. 2022;38:11284–11295. PubMed PMC
Tempra C., Brkljača Z., Vazdar M. Why do polyarginines adsorb at neutral phospholipid bilayers and polylysines do not? An insight from density functional theory calculations and molecular dynamics simulations. Phys Chem Chem Phys. 2023;25:27204–27214. PubMed
Vazdar M., Wernersson E., Khabiri M., Cwiklik L., Jurkiewicz P., Hof M., et al. Aggregation of oligoarginines at phospholipid membranes: molecular dynamics simulations, time-dependent fluorescence shift, and biomimetic colorimetric assays. J Phys Chem B. 2013;117:11530–11540. PubMed
Ingólfsson H.I., Melo M.N., Van Eerden F.J., Arnarez C., Lopez C.A., Wassenaar T.A., et al. Lipid organization of the plasma membrane. J Am Chem Soc. 2014;136:14554–14559. PubMed
Tesei G., Vazdar M., Jensen M.R., Cragnell C., Mason P.E., Heyda J., et al. Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc Natl Acad Sci USA. 2017;114:11428–11433. PubMed PMC
Vazdar M., Vymětal J., Heyda J., Vondrášek J., Jungwirth P. Like-charge guanidinium pairing from molecular dynamics and ab initio calculations. J Phys Chem A. 2011;115:11193–11201. PubMed
Wernersson E., Heyda J., Vazdar M., Lund M., Mason P.E., Jungwirth P. Orientational dependence of the affinity of guanidinium ions to the water surface. J Phys Chem B. 2011;115:12521–12526. PubMed
Allolio C., Baxova K., Vazdar M., Jungwirth P. Guanidinium pairing facilitates membrane translocation. J Phys Chem B. 2016;120:143–153. PubMed
Vazdar M., Uhlig F., Jungwirth P. Like-charge ion pairing in water: an ab initio molecular dynamics study of aqueous guanidinium cations. J Phys Chem Lett. 2012;3:2021–2024.
Nencini R., Tempra C., Biriukov D., Polák J., Ondo D., Heyda J., et al. Prosecco: polarization reintroduced by optimal scaling of electronic continuum correction origin in MD simulations. Biophys J. 2022;121:157a. PubMed
Leontyev I., Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys Chem Chem Phys. 2011;13:2613–2626. PubMed
Leontyev I.V., Stuchebrukhov A.A. Electronic continuum model for molecular dynamics simulations of biological molecules. J Chem Theory Comput. 2010;6:1498–1508. PubMed PMC
Nencini R., Tempra C., Biriukov D., Riopedre-Fernandez M., Chamorro V.C., Polák J., et al. Effective inclusion of electronic polarization improves the description of electrostatic interactions: The prosECCo75 biomolecular force field. J Chem Theory Comput. 2024;(17):7546–7559. PubMed PMC
Vazdar M., Jungwirth P., Mason P.E. Aqueous guanidinium-carbonate interactions by molecular dynamics and neutron scattering: relevance to ion-protein interactions. J Phys Chem B. 2013;117:1844–1848. PubMed
Vazdar M., Pluhařová E., Mason P.E., Vácha R., Jungwirth P. Ions at hydrophobic aqueous interfaces: molecular dynamics with effective polarization. J Phys Chem Lett. 2012;3:2087–2091.
Melcr J., Martinez-Seara H., Nencini R., Kolafa J., Jungwirth P., Ollila O.H.S. Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization. J Phys Chem B. 2018;122:4546–4557. PubMed
Kubíčková A., Kříek T., Coufal P., Vazdar M., Wernersson E., Heyda J., et al. Overcharging in biological systems: reversal of electrophoretic mobility of aqueous polyaspartate by multivalent cations. Phys Rev Lett. 2012;108 PubMed
Duboué-Dijon E., Javanainen M., Delcroix P., Jungwirth P., Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J Chem Phys. 2020;153:50901. PubMed
Phan L.X., Chamorro V.C., Martinez-Seara H., Crain J., Sansom M.S.P., Tucker S.J. Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin. Biophys J. 2023;122:1548–1556. PubMed PMC
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., De Groot B.L., et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2016 14:1. 2016;14:71–73. PubMed PMC
Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114:7830–7843. PubMed PMC
Duboué-Dijon E., Javanainen M., Delcroix P., Jungwirth P., Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J Chem Phys. 2020;153 PubMed
Kirby B.J., Jungwirth P. Charge scaling manifesto: a way of reconciling the inherently macroscopic and microscopic natures of molecular simulations. J Phys Chem Lett. 2019;10:7531–7536. PubMed
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Jr., et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–73. PubMed PMC
Gil Pineda L.I., Milko L.N., He Y. Performance of CHARMM36m with modified water model in simulating intrinsically disordered proteins: a case study. Biophys Rep. 2020;6:80–87.
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J Chem Phys. 1998;103:8577.
Postma J.C., Van Gunsteren J.P.M., Di Nola W.F., A. Haak Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81
Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190.
Evans D.J., Holian B.L. The nose–hoover thermostat. J Chem Phys. 1998;83:4069.
Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4:116–122. PubMed
Miyamoto S., Kollman P.A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13:952–962.
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
Michaud-Agrawal N., Denning E.J., Woolf T.B., Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem. 2011;32:2319–2327. PubMed PMC
W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics. PubMed
Hofmeister F. Zur Lehre von der Wirkung der Salze - Zweite Mittheilung. Arch für Exp Pathol und Pharmakol. 1888;24:247–260.
Kalra A., Tugcu N., Cramer S.M., Garde S. Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J Phys Chem B. 2001;105:6380–6386.
Makowski M., Bogunia M. Influence of ionic strength on hydrophobic interactions in water: dependence on solute size and shape. J Phys Chem B. 2020;124:10326–10336. PubMed PMC
Sakamoto K., Morishita T., Aburai K., Ito D., Imura T., Sakai K., et al. Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci Rep. 2021;11:1–9. PubMed PMC
Futaki S., Nakase I. Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization. Acc Chem Res. 2017;50:2449–2456. PubMed
Maccallum J.L., Bennett W.F. Drew, Tieleman D.P. Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J. 2008;94:3393–3404. PubMed PMC
Sun D., Forsman J., Woodward C.E. Atomistic molecular simulations suggest a kinetic model for membrane translocation by arginine-rich peptides. J Phys Chem B. 2015;119:14413–14420. PubMed
Sun D., Forsman J., Lund M., Woodward C.E. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study. Phys Chem Chem Phys. 2014;16:20785–20795. PubMed
Brock D.J., Kondow-McConaghy H., Allen J., Brkljača Z., Kustigian L., Jiang M., et al. Mechanism of cell penetration by permeabilization of late endosomes: interplay between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem Biol. 2020;27:1296–1307. .e5. PubMed PMC
Allolio C., Magarkar A., Jurkiewicz P., Baxová K., Javanainen M., Mason P.E., et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc Natl Acad Sci USA. 2018;115:11923–11928. PubMed PMC
Bennett W.F.D., Sapay N., Tieleman D.P. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J. 2014;106:210–219. PubMed PMC
MacCallum J.L., Bennett W.F.D., Tieleman D.P. Transfer of arginine into lipid bilayers is nonadditive. Biophys J. 2011;101:110–117. PubMed PMC
Tarek M. Membrane electroporation: a molecular dynamics simulation. Biophys J. 2005;88:4045–4053. PubMed PMC