Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order

. 2019 Aug 22 ; 123 (33) : 20393-20404. [epub] 20190726

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35692558

The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field models for the structure of the interface, which give only theoretical estimates of surface potential values and do not provide properties related to the local microscopic structure, such as the orientation of interfacial water molecules. Here we apply polarimetric angle-resolved second harmonic scattering (AR-SHS) to 300 nm diameter SiO2 colloidal suspensions to experimentally determine both surface potential and interfacial water orientation as a function of pH and NaCl concentration. The surface potential values and interfacial water orientation change significantly over the studied pH and salt concentration range, whereas zeta-potential (ζ) values remain constant. By comparing the surface and ζ-potentials, we find a layer of hydrated condensed ions present in the high pH case, and for NaCl concentrations ≥1 mM. For milder pH ranges (pH < 11), as well as for salt concentrations <1 mM, no charge condensation layer is observed. These findings are used to compute the surface charge densities using the Gouy-Chapman and Gouy-Chapman-Stern models. Furthermore, by using the AR-SHS data, we are able to determine the preferred water orientation in the layer directly in contact with the silica interface. Molecular dynamics simulations confirm the experimental trends and allow deciphering of the contributions of water layers to the total response.

Zobrazit více v PubMed

Colloidal Silica: Fundamentals and Applications; Bergna H. E., Roberts W. O., Eds.; CRC Press, Boca Raton, 2005.

Bard A. J.; Faulkner L. R.; Electrochemical Methods: Fundamentals and Applications; Wiley, New York, 2000.

Hunter R. J.Foundations of Colloid Science; Oxford University Press: New York, 2004.

Fundamentals of Interface and Colloid Science; Lyklema J., Ed.; Academic Press: London, 2005; Vol. 5.

Liu S. H. Microscopically Inhomogeneous Nature of the Stern Layer. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 305–313. 10.1016/S0022-0728(83)80212-5. DOI

Halley J. W.; Price D. Quantum Theory of the Double Layer: Model Including Solvent Structure. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 35 (17), 9095–9102. 10.1103/PhysRevB.35.9095. PubMed DOI

Weaver M. J.; Wasileski S. A. Influence of Double-Layer Solvation on Local Versus Macroscopic Surface Potentials on Ordered Platinum-Group Metals as Sensed by the Vibrational Stark Effect. Langmuir 2001, 17 (10), 3039–3043. 10.1021/la0014712. DOI

Wen Y.-C.; Zha S.; Liu X.; Yang S.; Guo P.; Shi G.; Fang H.; Shen Y. R.; Tian C. Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy. Phys. Rev. Lett. 2016, 116 (1), 016101–016105. 10.1103/PhysRevLett.116.016101. PubMed DOI

Lovering K. A.; Bertram A. K.; Chou K. C. New Information on the Ion-Identity-Dependent Structure of Stern Layer Revealed by Sum Frequency Generation Vibrational Spectroscopy. J. Phys. Chem. C 2016, 120 (32), 18099–18104. 10.1021/acs.jpcc.6b05564. DOI

Kobayashi M.; Juillerat F.; Galletto P.; Bowen P.; Borkovec M. Aggregation and Charging of Colloidal Silica Particles: Effect of Particle Size. Langmuir 2005, 21 (13), 5761–5769. 10.1021/la046829z. PubMed DOI

Hiemenz P. C.; Rajagopalan R.. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, 1997.

Hunter R. J.Zeta Potential in Colloid Science; Academic Press: London, 1981.

Lyklema J. Molecular Interpretation of Electrokinetic Potentials. Curr. Opin. Colloid Interface Sci. 2010, 15 (3), 125–130. 10.1016/j.cocis.2010.01.001. DOI

Předota M.; Machesky M. L.; Wesolowski D. J. Molecular Origins of the Zeta Potential. Langmuir 2016, 32 (40), 10189–10198. 10.1021/acs.langmuir.6b02493. PubMed DOI

Brkljača Z.; Namjesnik D.; Lützenkirchen J.; Předota M.; Preocǎnin T. Quartz/Aqueous Electrolyte Solution Interface: Molecular Dynamic Simulation and Interfacial Potential Measurements. J. Phys. Chem. C 2018, 122, 24025–24036. 10.1021/acs.jpcc.8b04035. DOI

Scales P. J.; Grieser F.; Healy T. W.; White L. R.; Chan D. Y. C. Electrokinetics of the Silica-Solution Interface: a Flat Plate Streaming Potential Study. Langmuir 1992, 8 (3), 965–974. 10.1021/la00039a037. DOI

Jena K. C.; Hore D. K. Variation of Ionic Strength Reveals the Interfacial Water Structure at a Charged Mineral Surface. J. Phys. Chem. C 2009, 113 (34), 15364–15372. 10.1021/jp905475m. DOI

Campen R. K.; Pymer A. K.; Nihonyanagi S.; Borguet E. Linking Surface Potential and Deprotonation in Nanoporous Silica: Second Harmonic Generation and Acid/Base Titration. J. Phys. Chem. C 2010, 114 (43), 18465–18473. 10.1021/jp1037574. DOI

Flores S. C.; Kherb J.; Konelick N.; Chen X.; Cremer P. S. The Effects of Hofmeister Cations at Negatively Charged Hydrophilic Surfaces. J. Phys. Chem. C 2012, 116 (9), 5730–5734. 10.1021/jp210791j. DOI

Dewan S.; Yeganeh M. S.; Borguet E. Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity. J. Phys. Chem. Lett. 2013, 4 (11), 1977–1982. 10.1021/jz4007417. PubMed DOI

Covert P. A.; Jena K. C.; Hore D. K. Throwing Salt Into the Mix: Altering Interfacial Water Structure by Electrolyte Addition. J. Phys. Chem. Lett. 2014, 5 (1), 143–148. 10.1021/jz402052s. PubMed DOI

Darlington A. M.; Jarisz T. A.; DeWalt-Kerian E. L.; Roy S.; Kim S.; Azam M. S.; Hore D. K.; Gibbs J. M. Separating the pH-Dependent Behavior of Water in the Stern and Diffuse Layers with Varying Salt Concentration. J. Phys. Chem. C 2017, 121 (37), 20229–20241. 10.1021/acs.jpcc.7b03522. DOI

DeWalt-Kerian E. L.; Kim S.; Azam M. S.; Zeng H.; Liu Q.; Gibbs J. M. pH-Dependent Inversion of Hofmeister Trends in the Water Structure of the Electrical Double Layer. J. Phys. Chem. Lett. 2017, 8 (13), 2855–2861. 10.1021/acs.jpclett.7b01005. PubMed DOI

Boamah M. D.; Ohno P. E.; Geiger F. M.; Eisenthal K. B. Relative Permittivity in the Electrical Double Layer From Nonlinear Optics. J. Chem. Phys. 2018, 148 (22), 222808–222808. 10.1063/1.5011977. PubMed DOI

Ong S.; Zhao X.; Eisenthal K. B. Polarization of Water Molecules at a Charged Interface: Second Harmonic Studies of the Silica/Water Interface. Chem. Phys. Lett. 1992, 191 (3–4), 327–335. 10.1016/0009-2614(92)85309-X. DOI

Zhao X.; Ong S.; Eisenthal K. B. Polarization of Water Molecules at a Charged Interface. Second Harmonic Studies of Charged Monolayers at the Air/Water Interface. Chem. Phys. Lett. 1993, 202 (6), 513–520. 10.1016/0009-2614(93)90041-X. DOI

Zhao X.; Ong S.; Wang H.; Eisenthal K. B. New Method for Determination of Surface pKa Using Second Harmonic Generation. Chem. Phys. Lett. 1993, 214 (2), 203–207. 10.1016/0009-2614(93)90082-C. DOI

Geiger F. M. Second Harmonic Generation, Sum Frequency Generation, and Χ (3): Dissecting Environmental Interfaces with a Nonlinear Optical Swiss Army Knife. Annu. Rev. Phys. Chem. 2009, 60 (1), 61–83. 10.1146/annurev.physchem.59.032607.093651. PubMed DOI

Malin J. N.; Holland J. G.; Geiger F. M. Free Energy Relationships in the Electric Double Layer and Alkali Earth Speciation at the Fused Silica/Water Interface. J. Phys. Chem. C 2009, 113 (41), 17795–17802. 10.1021/jp905881h. DOI

Azam M. S.; Darlington A.; Gibbs-Davis J. M. The Influence of Concentration on Specific Ion Effects at the Silica/Water Interface. J. Phys.: Condens. Matter 2014, 26 (24), 244107–244111. 10.1088/0953-8984/26/24/244107. PubMed DOI

Yan E. C. Y.; Liu Y.; Eisenthal K. B. New Method for Determination of Surface Potential of Microscopic Particles by Second Harmonic Generation. J. Phys. Chem. B 1998, 102, 6331.10.1021/jp981335u. DOI

Favaro M.; Jeong B.; Ross P. N.; Yano J.; Hussain Z.; Liu Z.; Crumlin E. J. Unravelling the Electrochemical Double Layer by Direct Probing of the Solid/Liquid Interface. Nat. Commun. 2016, 7 (1), 12695.10.1038/ncomms12695. PubMed DOI PMC

Brown M. A.; Jordan I.; Redondo A. B.; Kleibert A.; Wörner H. J.; van Bokhoven J. A. In Situ Photoelectron Spectroscopy at the Liquid/Nanoparticle Interface. Surf. Sci. 2013, 610 (C), 1–6. 10.1016/j.susc.2013.01.012. DOI

Brown M. A.; Beloqui Redondo A.; Sterrer M.; Winter B.; Pacchioni G.; Abbas Z.; van Bokhoven J. A. Measure of Surface Potential at the Aqueous–Oxide Nanoparticle Interface by XPS From a Liquid Microjet. Nano Lett. 2013, 13 (11), 5403–5407. 10.1021/nl402957y. PubMed DOI

Brown M. A.; Abbas Z.; Kleibert A.; Green R. G.; Goel A.; May S.; Squires T. M. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X 2016, 6 (1), 011007–011012. 10.1103/PhysRevX.6.011007. DOI

de Beer A. G. F.; Campen R. K.; Roke S. Separating Surface Structure and Surface Charge with Second-Harmonic and Sum-Frequency Scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82 (23), 235431–235439. 10.1103/PhysRevB.82.235431. DOI

Gonella G.; Lütgebaucks C.; de Beer A. G. F.; Roke S. Second Harmonic and Sum-Frequency Generation From Aqueous Interfaces Is Modulated by Interference. J. Phys. Chem. C 2016, 120 (17), 9165–9173. 10.1021/acs.jpcc.5b12453. DOI

Lütgebaucks C.; Gonella G.; Roke S. Optical Label-Free and Model-Free Probe of the Surface Potential of Nanoscale and Microscopic Objects in Aqueous Solution. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (19), 195410.10.1103/PhysRevB.94.195410. DOI

Lütgebaucks C.; Macias-Romero C.; Roke S. Characterization of the Interface of Binary Mixed DOPC:DOPS Liposomes in Water: the Impact of Charge Condensation. J. Chem. Phys. 2017, 146 (4), 044701–044708. 10.1063/1.4974084. PubMed DOI

Kroutil O.; Chval Z.; Skelton A. A.; Předota M. Computer Simulations of Quartz (101)–Water Interface Over a Range of pH Values. J. Phys. Chem. C 2015, 119 (17), 9274–9286. 10.1021/acs.jpcc.5b00096. DOI

Leontyev I.; Stuchebrukhov A. Accounting for Electronic Polarization in Non-Polarizable Force Fields. Phys. Chem. Chem. Phys. 2011, 13 (7), 2613–2626. 10.1039/c0cp01971b. PubMed DOI

Biriukov D.; Kroutil O.; Předota M. Modeling of Solid–Liquid Interfaces Using Scaled Charges: Rutile (110) Surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23954–23966. 10.1039/C8CP04535F. PubMed DOI

Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1469. 10.1021/acs.jpcb.5b05221. PubMed DOI

Berendsen H.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Boyd R. W. Nonlinear Opt. 2008, 1–619. 10.1016/B978-0-12-369470-6.00001-0. DOI

de Beer A. G. F.; Roke S. What Interactions Can Distort the Orientational Distribution of Interfacial Water Molecules as Probed by Second Harmonic and Sum Frequency Generation?. J. Chem. Phys. 2016, 145 (4), 044705–044707. 10.1063/1.4959033. PubMed DOI

de Beer A. G. F.; Roke S. Nonlinear Mie Theory for Second-Harmonic and Sum-Frequency Scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79 (15), 155420–155429. 10.1103/PhysRevB.79.155420. DOI

Ohshima H.Theory of Colloid and Interfacial Electric Phenomena; Elsevier, 2006; pp 1–491.

Nihonyanagi S.; Yamaguchi S.; Tahara T. Direct Evidence for Orientational Flip-Flop of Water Molecules at Charged Interfaces: a Heterodyne-Detected Vibrational Sum Frequency Generation Study. J. Chem. Phys. 2009, 130 (20), 204704.10.1063/1.3135147. PubMed DOI

Brown M. A.; Goel A.; Abbas Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chem., Int. Ed. 2016, 55 (11), 3790–3794. 10.1002/anie.201512025. PubMed DOI

Abbas Z.; Labbez C.; Nordholm S.; Ahlberg E. Size-Dependent Surface Charging of Nanoparticles. J. Phys. Chem. C 2008, 112 (15), 5715–5723. 10.1021/jp709667u. DOI

Hassanali A. A.; Singer S. J. Model for the Water–Amorphous Silica Interface: the Undissociated Surface. J. Phys. Chem. B 2007, 111 (38), 11181–11193. 10.1021/jp062971s. PubMed DOI

Zhuravlev L. T. Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas. Langmuir 1987, 3 (3), 316–318. 10.1021/la00075a004. DOI

Roke S.; Gonella G. Nonlinear Light Scattering and Spectroscopy of Particles and Droplets in Liquids. Annu. Rev. Phys. Chem. 2012, 63 (1), 353–378. 10.1146/annurev-physchem-032511-143748. PubMed DOI

Kosmulski M. Positive Electrokinetic Charge of Silica in the Presence of Chlorides. J. Colloid Interface Sci. 1998, 208, 543–545. 10.1006/jcis.1998.5859. PubMed DOI

Leroy P.; Devau N.; Revil A.; Bizi M. Influence of Surface Conductivity on the Apparent Zeta Potential of Amorphous Silica Nanoparticles. J. Colloid Interface Sci. 2013, 410 (C), 81–93. 10.1016/j.jcis.2013.08.012. PubMed DOI

Bolt G. H. Determination of the Charge Density of Silica Sols. J. Phys. Chem. 1957, 61 (9), 1166–1169. 10.1021/j150555a007. DOI

Behrens S. H.; Grier D. G. The Charge of Glass and Silica Surfaces. J. Chem. Phys. 2001, 115 (14), 6716–6721. 10.1063/1.1404988. DOI

Yamanaka J.; Hayashi Y.; Ise N.; Yamaguchi T. Control of the Surface Charge Density of Colloidal Silica by Sodium Hydroxide in Salt-Free and Low-Salt Dispersions. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, 55 (3), 3028–3036. 10.1103/PhysRevE.55.3028. DOI

Dunstan D. E. Temperature Dependence of the Electrokinetic Properties of Two Disparate Surfaces. J. Colloid Interface Sci. 1994, 166, 472–475. 10.1006/jcis.1994.1319. DOI

Darlington A. M.; Gibbs-Davis J. M. Bimodal or Trimodal? the Influence of Starting pH on Site Identity and Distribution at the Low Salt Aqueous/Silica Interface. J. Phys. Chem. C 2015, 119 (29), 16560–16567. 10.1021/acs.jpcc.5b02480. DOI

Brown M. A.; Bossa G. V.; May S. Emergence of a Stern Layer From the Incorporation of Hydration Interactions Into the Gouy–Chapman Model of the Electrical Double Layer. Langmuir 2015, 31 (42), 11477–11483. 10.1021/acs.langmuir.5b02389. PubMed DOI

Sverjensky D. A. Prediction of Surface Charge on Oxides in Salt Solutions: Revisions for 1:1 (M+L−) Electrolytes. Geochim. Cosmochim. Acta 2005, 69 (2), 225–257. 10.1016/j.gca.2004.05.040. DOI

Sonnefeld J. Determination of Surface Charge Density Constants for Spherical Silica Particles Using a Linear Transformation. J. Colloid Interface Sci. 1996, 183, 597–599. 10.1006/jcis.1996.0583. PubMed DOI

Barisik M.; Atalay S.; Beskok A.; Qian S. Size Dependent Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 2014, 118 (4), 1836–1842. 10.1021/jp410536n. DOI

Shi Y.-R.; Ye M.-P.; Du L.-C.; Weng Y.-X. Experimental Determination of Particle Size-Dependent Surface Charge Density for Silica Nanospheres. J. Phys. Chem. C 2018, 122 (41), 23764–23771. 10.1021/acs.jpcc.8b07566. DOI

Vance F. W.; Lemon B. I.; Ekhoff J. A.; Hupp J. T. Interrogation of Nanoscale Silicon Dioxide/Water Interfaces via Hyper-Rayleigh Scattering. J. Phys. Chem. B 1998, 102 (11), 1845–1848. 10.1021/jp9800261. DOI

Sulpizi M.; Gaigeot M.-P.; Sprik M. The Silica–Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 2012, 8 (3), 1037–1047. 10.1021/ct2007154. PubMed DOI

Schmickler W., Santos E.. Interfacial Electrochemistry; Springer: New York, 2010.

Gongadze E.; Petersen S.; Beck U.; van Rienen U.; Classical Models of the Interface Between an Electrode and an Electrolyte. Proceedings of the COMSOL conference; Milan, Italy, 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...