Evolution of the electrical double layer with electrolyte concentration probed by second harmonic scattering
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37455624
PubMed Central
PMC10568258
DOI
10.1039/d3fd00036b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Investigating the electrical double layer (EDL) structure has been a long-standing challenge and has seen the emergence of several sophisticated techniques able to probe selectively the few molecular layers of a solid/water interface. While a qualitative estimation of the thickness of the EDL can be obtained using simple theoretical models, following experimentally its evolution is not straightforward and can be even more complicated in nano- or microscale systems, particularly when changing the ionic concentration by several orders of magnitude. Here, we bring insight into the structure of the EDL of SiO2 nanoparticle suspensions and its evolution with increasing ionic concentration using angle-resolved second harmonic scattering (AR-SHS). Below millimolar salt concentrations, we can successively characterize inner-sphere adsorption, diffuse layer formation, and outer-sphere adsorption. Moreover, we show for the first time that, by appropriately selecting the nanoparticle size, it is possible to retrieve information also in the millimolar range. There, we observe a decrease in the magnitude of the surface potential corresponding to a compression in the EDL thickness, which agrees with the results of several other electroanalytical and optical techniques. Molecular dynamics simulations suggest that the EDL compression mainly results from the diffuse layer compression rather than outer-sphere ions (Stern plane) moving closer to the surface.
Zobrazit více v PubMed
Lovering K. A. Bertram A. K. Chou K. C. New Information on the Ion-Identity-Dependent Structure of Stern Layer Revealed by Sum Frequency Generation Vibrational Spectroscopy. J. Phys. Chem. C. 2016;120:18099–18104. doi: 10.1021/acs.jpcc.6b05564. DOI
Rashwan M. Rehl B. Sthoer A. Darlington A. M. Azam Md. S. Zeng H. Liu Q. Tyrode E. Gibbs J. M. Structure of the Silica/Divalent Electrolyte Interface: Molecular Insight into Charge Inversion with Increasing pH. J. Phys. Chem. C. 2020;124:26973–26981. doi: 10.1021/acs.jpcc.0c09747. DOI
Siretanu I. Ebeling D. Andersson M. P. Stipp S. L. S. Philipse A. Stuart M. C. van den Ende D. Mugele F. Direct observation of ionic structure at solid-liquid interfaces: a deep look into the Stern Layer. Sci. Rep. 2014;4:4956. doi: 10.1038/srep04956. PubMed DOI PMC
Favaro M. Jeong B. Ross P. N. Yano J. Hussain Z. Liu Z. Crumlin E. J. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 2016;7:12695. doi: 10.1038/ncomms12695. PubMed DOI PMC
Bohinc K. Kralj-Iglič V. Iglič A. Thickness of electrical double layer. Effect of ion size. Electrochim. Acta. 2001;46:3033–3040. doi: 10.1016/S0013-4686(01)00525-4. DOI
Das S. Chakraborty S. Mitra S. K. Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization. Phys. Rev. E. 2012;85:051508. doi: 10.1103/PhysRevE.85.051508. PubMed DOI
Iván Guerrero-García G. González-Tovar E. Chávez-Páez M. Kłos J. Lamperski S. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness. Phys. Chem. Chem. Phys. 2018;20:262–275. doi: 10.1039/C7CP05433E. PubMed DOI
Tokmachev M. G. Tikhonov N. A. Simulation of capacitive deionization accounting the change of Stern layer thickness. J. Math. Chem. 2019;57:2169–2181. doi: 10.1007/s10910-019-01064-7. DOI
Saboorian-Jooybari H. Chen Z. Calculation of re-defined electrical double layer thickness in symmetrical electrolyte solutions. Results Phys. 2019;15:102501. doi: 10.1016/j.rinp.2019.102501. DOI
Keshavarzi E. Abareghi M. The Effect of Stern Layer Thickness on the Diffuse Capacitance for Size Asymmetric Electrolyte inside the Charged Spherical Cavities by Density Functional Theory. J. Electrochem. Soc. 2022;169:020547. doi: 10.1149/1945-7111/ac52fe. DOI
Brown M. A. Goel A. Abbas Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chem. 2016;55:3790–3794. doi: 10.1002/anie.201512025. PubMed DOI
Schürer B. Wunderlich S. Sauerbeck C. Peschel U. Peukert W. Probing colloidal interfaces by angle-resolved second harmonic light scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2010;82:241404. doi: 10.1103/PhysRevB.82.241404. DOI
Marchioro A. Bischoff M. Lütgebaucks C. Biriukov D. Předota M. Roke S. Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order. J. Phys. Chem. C. 2019;123:20393–20404. doi: 10.1021/acs.jpcc.9b05482. PubMed DOI PMC
Ong S. Zhao X. Eisenthal K. B. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 1992;191:327–335. doi: 10.1016/0009-2614(92)85309-X. DOI
Zhao X. Ong S. Eisenthal K. B. Polarization of water molecules at a charged interface. Second harmonic studies of charged monolayers at the air/water interface. Phys. Rev. Lett. 1993;202:513–520.
Gonella G. Lütgebaucks C. de Beer A. G. F. Roke S. Second Harmonic and Sum-Frequency Generation from Aqueous Interfaces Is Modulated by Interference. J. Phys. Chem. C. 2016;120:9165–9173. doi: 10.1021/acs.jpcc.5b12453. DOI
Bischoff M. Biriukov D. Předota M. Marchioro A. Second Harmonic Scattering Reveals Ion-Specific Effects at the SiO2 and TiO2 Nanoparticle/Aqueous Interface. J. Phys. Chem. C. 2021;125:25261–25274. doi: 10.1021/acs.jpcc.1c07191. PubMed DOI PMC
Pullanchery S. Kulik S. Okur H. I. de Aguiar H. B. Roke S. On the stability and necessary electrophoretic mobility of bare oil nanodroplets in water. J. Chem. Phys. 2020;152:241104. doi: 10.1063/5.0009640. PubMed DOI
Ohshima H. A Simple Expression for Henry’s Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles. J. Colloid Interface Sci. 1994;168:269–271. doi: 10.1006/jcis.1994.1419. DOI
Bischoff M. Biriukov D. Předota M. Roke S. Marchioro A. Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface. J. Phys. Chem. C. 2020;124:10961–10974. doi: 10.1021/acs.jpcc.0c01158. PubMed DOI PMC
Gomopoulos N. Lütgebaucks C. Sun Q. Macias-Romero C. Roke S. Label-free second harmonic and hyper Rayleigh scattering with high efficiency. Opt. Express. 2013;21:815–821. doi: 10.1364/OE.21.000815. PubMed DOI
Lütgebaucks C. Gonella G. Roke S. Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution. Phys. Rev. B. 2016;94:195410. doi: 10.1103/PhysRevB.94.195410. DOI
Bischoff M. Kim N. Y. Joo J. B. Marchioro A. Water Orientation at the Anatase TiO2 Nanoparticle Interface: A Probe of Surface pKa Values. J. Phys. Chem. Lett. 2022;13:8677–8683. doi: 10.1021/acs.jpclett.2c02453. PubMed DOI PMC
Chu B. Marchioro A. Roke S. Size dependence of second-harmonic scattering from nanoparticles: Disentangling surface and electrostatic contributions. J. Chem. Phys. 2023;158:094711. doi: 10.1063/5.0135157. PubMed DOI
Kroutil O. Chval Z. Skelton A. A. Předota M. Computer Simulations of Quartz (101)–Water Interface over a Range of pH Values. J. Phys. Chem. C. 2015;119:9274–9286. doi: 10.1021/acs.jpcc.5b00096. DOI
Berendsen H. J. C. Grigera J. R. Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Kohagen M. Mason P. E. Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B. 2016;120:1454–1460. doi: 10.1021/acs.jpcb.5b05221. PubMed DOI
Leontyev I. Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011;13:2613–2626. doi: 10.1039/C0CP01971B. PubMed DOI
Biriukov D. Kroutil O. Předota M. Modeling of solid–liquid interfaces using scaled charges: rutile (110) surfaces. Phys. Chem. Chem. Phys. 2018;20:23954–23966. doi: 10.1039/C8CP04535F. PubMed DOI
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Essmann U. Perera L. Berkowitz M. L. Darden T. Lee H. Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Yeh I.-C. Berkowitz M. L. Ewald summation for systems with slab geometry. J. Chem. Phys. 1999;111:3155–3162. doi: 10.1063/1.479595. DOI
Miyamoto S. Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Hess B. LINCS P. A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008;4:116–122. doi: 10.1021/ct700200b. PubMed DOI
Abraham M. J. Murtola T. Schulz R. Páll S. Smith J. C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Parez S. Předota M. Machesky M. Dielectric Properties of Water at Rutile and Graphite Surfaces: Effect of Molecular Structure. J. Phys. Chem. C. 2014;118:4818–4834. doi: 10.1021/jp4128012. DOI
Gavish N. Promislow K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach. Phys. Rev. E. 2016;94:012611. doi: 10.1103/PhysRevE.94.012611. PubMed DOI
Biriukov D. Fibich P. Předota M. Zeta Potential Determination from Molecular Simulations. J. Phys. Chem. C. 2020;124:3159–3170. doi: 10.1021/acs.jpcc.9b11371. DOI
Předota M. Machesky M. L. Wesolowski D. J. Molecular Origins of the Zeta Potential. Langmuir. 2016;32:10189–10198. doi: 10.1021/acs.langmuir.6b02493. PubMed DOI
Ohshima H., Theory of Colloid and Interfacial Electric Phenomena, Elsevier, Academic Press, Amsterdam, 2006, vol. 12
Döpke M. F. Hartkamp R. The importance of specifically adsorbed ions for electrokinetic phenomena: Bridging the gap between experiments and MD simulations. J. Chem. Phys. 2021;154:094701. doi: 10.1063/5.0038161. PubMed DOI
Brown M. A. Abbas Z. Kleibert A. Green R. G. Goel A. May S. Squires T. M. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X. 2016;6:011007.
Ma E. Ohno P. E. Kim J. Liu Y. Lozier E. H. Miller T. F. Wang H.-F. Geiger F. M. A New Imaginary Term in the Second-Order Nonlinear Susceptibility from Charged Interfaces. J. Phys. Chem. Lett. 2021;12:5649–5659. doi: 10.1021/acs.jpclett.1c01103. PubMed DOI
Diot J. L. Joseph J. Martin J. R. Clechet P. pH dependence of the Si/SiO2 interface state density for EOS systems: Quasi-static and AC conductance methods. J. Electroanal. Chem. 1985;193:75–88. doi: 10.1016/0022-0728(85)85053-1. DOI
Siu W. M. Cobbold R. S. C. Basic properties of the electrolyte—SiO2—Si system: Physical and theoretical aspects. IEEE Trans. Electron Devices. 1979;26:1805–1815.
Söderström J. Ottosson N. Pokapanich W. Öhrwall G. Björneholm O. Functionalized nanoparticles in aqueous surroundings probed by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2011;184:375–378. doi: 10.1016/j.elspec.2011.02.006. DOI
Sonnefeld J. Determination of Surface Charge Density Constants for Spherical Silica Particles Using a Linear Transformation. J. Colloid Interface Sci. 1996;183:597–599. doi: 10.1006/jcis.1996.0583. PubMed DOI
Yamanaka J. Hayashi Y. Ise N. Yamaguchi T. Control of the surface charge density of colloidal silica by sodium hydroxide in salt-free and low-salt dispersions. Phys. Rev. E. 1997;55:3028–3036. doi: 10.1103/PhysRevE.55.3028. DOI
Jena K. C. Covert P. A. Hore D. K. The Effect of Salt on the Water Structure at a Charged Solid Surface: Differentiating Second- and Third-order Nonlinear Contributions. J. Phys. Chem. Lett. 2011;2:1056–1061. doi: 10.1021/jz200251h. DOI
Pezzotti S. Galimberti D. R. Gaigeot M.-P. Deconvolution of BIL-SFG and DL-SFG spectroscopic signals reveals order/disorder of water at the elusive aqueous silica interface. Phys. Chem. Chem. Phys. 2019;21:22188–22202. doi: 10.1039/C9CP02766A. PubMed DOI
Chen S.-H. Singer S. J. Molecular Dynamics Study of the Electric Double Layer and Nonlinear Spectroscopy at the Amorphous Silica–Water Interface. J. Phys. Chem. B. 2019;123:6364–6384. doi: 10.1021/acs.jpcb.9b05871. PubMed DOI
Joutsuka T. Morita A. Electrolyte and Temperature Effects on Third-Order Susceptibility in Sum-Frequency Generation Spectroscopy of Aqueous Salt Solutions. J. Phys. Chem. C. 2018;122:11407–11413. doi: 10.1021/acs.jpcc.8b02445. DOI
Joutsuka T. Hirano T. Sprik M. Morita A. Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water. Phys. Chem. Chem. Phys. 2018;20:3040–3053. doi: 10.1039/C7CP01978E. PubMed DOI
Cai C. Azam Md. S. Hore D. K. Determining the Surface Potential of Charged Aqueous Interfaces Using Nonlinear Optical Methods. J. Phys. Chem. C. 2021;125:25307–25315. doi: 10.1021/acs.jpcc.1c07761. DOI
Ohno P. E. Chang H. Spencer A. P. Liu Y. Boamah M. D. Wang H. Geiger F. M. Beyond the Gouy–Chapman Model with Heterodyne-Detected Second Harmonic Generation. J. Phys. Chem. Lett. 2019;10:2328–2334. doi: 10.1021/acs.jpclett.9b00727. PubMed DOI
Wang H. Hu X.-H. Wang H.-F. Charge-Induced χ(3) Susceptibility in Interfacial Nonlinear Optical Spectroscopy Beyond the Bulk Aqueous Contributions: The Case for Silica/Water Interface. J. Phys. Chem. C. 2021;125:26208–26215. doi: 10.1021/acs.jpcc.1c08263. DOI
Barisik M. Atalay S. Beskok A. Qian S. Size Dependent Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C. 2014;118:1836–1842. doi: 10.1021/jp410536n. DOI