• This record comes from PubMed

Second Harmonic Scattering Reveals Ion-Specific Effects at the SiO2 and TiO2 Nanoparticle/Aqueous Interface

. 2021 Nov 18 ; 125 (45) : 25261-25274. [epub] 20211109

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Ion-specific effects play a crucial role in controlling the stability of colloidal systems and regulating interfacial processes. Although mechanistic pictures have been developed to explain the electrostatic structure of solid/water colloidal interfaces, ion-specific effects remain poorly understood. Here we quantify the average interfacial water orientation and the electrostatic surface potential around 100 nm SiO2 and TiO2 colloidal particles in the presence of NaCl, RbCl, and CaCl2 using polarimetric angle-resolved second harmonic scattering. We show that these two parameters can be used to establish the ion adsorption mechanism in a low ionic strength regime (<1 mM added salt). The relative differences between salts as a function of the ionic strength demonstrate cation- and surface-specific preferences for inner- vs outer-sphere adsorption. Compared to monovalent Rb+ and Na+, Ca2+ is found to be preferentially adsorbed as outer-sphere on SiO2 surfaces, while a dominant inner-sphere adsorption is observed for Ca2+ on TiO2. Molecular dynamics simulations performed on crystalline SiO2 and TiO2 surfaces support the experimental conclusions. This work contributes to the understanding of the electrostatic environment around colloidal nanoparticles on a molecular level by providing insight into ion-specific effects with micromolar sensitivity.

See more in PubMed

Karlsson M.; Craven C.; Dove P. M.; Casey W. H. Surface Charge Concentrations on Silica in Different 1.0 M Metal-Chloride Background Electrolytes and Implications for Dissolution Rates. Aquat. Geochem. 2001, 7, 13–32. 10.1023/A:1011377400253. DOI

Abendroth R. P. Behavior of a Pyrogenic Silica in Simple Electrolytes. J. Colloid Interface Sci. 1970, 34, 591–596. 10.1016/0021-9797(70)90223-7. DOI

Kitamura A.; Fujiwara K.; Yamamoto T.; Nishikawa S.; Moriyama H. Analysis of Adsorption Behavior of Cations onto Quartz Surface by Electrical Double-Layer Model. J. Nucl. Sci. Technol. 1999, 36, 1167–1175. 10.1080/18811248.1999.9726312. DOI

Tadros Th. F.; Lyklema J. The Electrical Double Layer on Silica in the Presence of Bivalent Counter-Ions. J. Electroanal. Chem. Interfacial Electrochem. 1969, 22, 1–7. 10.1016/S0022-0728(69)80140-3. DOI

Dove P. M.; Craven C. M. Surface Charge Density on Silica in Alkali and Alkaline Earth Chloride Electrolyte Solutions. Geochim. Cosmochim. Acta 2005, 69, 4963–4970. 10.1016/j.gca.2005.05.006. DOI

Yates D. E.; Healy T. W. Titanium Dioxide–Electrolyte Interface. Part 2.–Surface Charge (Titration) Studies. J. Chem. Soc., Faraday Trans. 1 1980, 76, 9–18. 10.1039/f19807600009. DOI

Ridley M.; Machesky M.; Wesolowski D.; Palmer D. Calcium Adsorption at the Rutile-Water Interface: A Potentiometric Study in NaCl Media to 250°C. Geochim. Cosmochim. Acta 1999, 63, 3087–3096. 10.1016/S0016-7037(99)00236-7. DOI

Ridley M. K.; Hackley V. A.; Machesky M. L. Characterization and Surface-Reactivity of Nanocrystalline Anatase in Aqueous Solutions. Langmuir 2006, 22, 10972–10982. 10.1021/la061774h. PubMed DOI

Machesky M.; Wesolowski D.; Rosenqvist J.; Předota M.; Vlcek L.; Ridley M.; Kohli V.; Zhang Z.; Fenter P.; Cummings P.; Lvov S.; Fedkin M.; Rodriguez-Santiago V.; Kubicki J.; Bandura A. Comparison of Cation Adsorption by Isostructural Rutile and Cassiterite. Langmuir 2011, 27, 4585–4593. 10.1021/la1040163. PubMed DOI

Wesolowski D. J.; Machesky M. L.; Ridley M. K.; Palmer D. A.; Zhang Z.; Fenter P. A.; Předota M.; Cummings P. T. Ion Adsorption on Metal Oxide Surfaces to Hydrothermal Conditions. ECS Trans. 2007, 11, 167–180. 10.1149/1.2939086. DOI

Jang H. M.; Fuerstenau D. W. The Specific Adsorption of Alkaline-Earth Cations at the Rutile/Water Interface. Colloids Surf. 1986, 21, 235–257. 10.1016/0166-6622(86)80094-4. DOI

Lützenkirchen J.; Preočanin T.; Kovačević D.; Tomišić V.; Lövgren L.; Kallay N. Potentiometric Titrations as a Tool for Surface Charge Determination. Croat. Chem. Acta 2012, 85, 391–417. 10.5562/cca2062. DOI

Franks G. V. Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction. J. Colloid Interface Sci. 2002, 249, 44–51. 10.1006/jcis.2002.8250. PubMed DOI

Kosmulski M. Positive Electrokinetic Charge of Silica in the Presence of Chlorides. J. Colloid Interface Sci. 1998, 208, 543–545. 10.1006/jcis.1998.5859. PubMed DOI

Gmür T. A.; Goel A.; Brown M. A. Quantifying Specific Ion Effects on the Surface Potential and Charge Density at Silica Nanoparticle–Aqueous Electrolyte Interfaces. J. Phys. Chem. C 2016, 120, 16617–16625. 10.1021/acs.jpcc.6b02476. DOI

Brown M. A.; Abbas Z.; Kleibert A.; Green R. G.; Goel A.; May S.; Squires T. M. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X 2016, 6, 011007.10.1103/PhysRevX.6.011007. DOI

Söderström J.; Ottosson N.; Pokapanich W.; Öhrwall G.; Björneholm O. Functionalized Nanoparticles in Aqueous Surroundings Probed by X-Ray Photoelectron Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2011, 184, 375–378. 10.1016/j.elspec.2011.02.006. DOI

Flores S. C.; Kherb J.; Konelick N.; Chen X.; Cremer P. S. The Effects of Hofmeister Cations at Negatively Charged Hydrophilic Surfaces. J. Phys. Chem. C 2012, 116, 5730–5734. 10.1021/jp210791j. DOI

Kataoka S.; Gurau M. C.; Albertorio F.; Holden M. A.; Lim S.-M.; Yang R. D.; Cremer P. S. Investigation of Water Structure at the TiO2 /Aqueous Interface. Langmuir 2004, 20, 1662–1666. 10.1021/la035971h. DOI

Jena K. C.; Hore D. K. Variation of Ionic Strength Reveals the Interfacial Water Structure at a Charged Mineral Surface. J. Phys. Chem. C 2009, 113, 15364–15372. 10.1021/jp905475m. DOI

Rashwan M.; Rehl B.; Sthoer A.; Darlington A. M.; Azam Md. S.; Zeng H.; Liu Q.; Tyrode E.; Gibbs J. M. Structure of the Silica/Divalent Electrolyte Interface: Molecular Insight into Charge Inversion with Increasing pH. J. Phys. Chem. C 2020, 124, 26973–26981. 10.1021/acs.jpcc.0c09747. DOI

Schaefer J.; Backus E. H. G.; Bonn M. Evidence for Auto-Catalytic Mineral Dissolution from Surface-Specific Vibrational Spectroscopy. Nat. Commun. 2018, 9, 3316.10.1038/s41467-018-05762-9. PubMed DOI PMC

Rehl B.; Gibbs J. M. Role of Ions on the Surface-Bound Water Structure at the Silica/Water Interface: Identifying the Spectral Signature of Stability. J. Phys. Chem. Lett. 2021, 12, 2854–2864. 10.1021/acs.jpclett.0c03565. PubMed DOI

Rehl B.; Rashwan M.; DeWalt-Kerian E. L.; Jarisz T. A.; Darlington A. M.; Hore D. K.; Gibbs J. M. New Insights into χ(3) Measurements: Comparing Nonresonant Second Harmonic Generation and Resonant Sum Frequency Generation at the Silica/Aqueous Electrolyte Interface. J. Phys. Chem. C 2019, 123, 10991–11000. 10.1021/acs.jpcc.9b01300. DOI

Backus E. H. G.; Schaefer J.; Bonn M. Probing the Mineral–Water Interface with Nonlinear Optical Spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 10482–10501. 10.1002/anie.202003085. PubMed DOI PMC

Azam M. S.; Darlington A.; Gibbs-Davis J. M. The Influence of Concentration on Specific Ion Effects at the Silica/Water Interface. J. Phys.: Condens. Matter 2014, 26, 244107.10.1088/0953-8984/26/24/244107. PubMed DOI

Azam M. S.; Weeraman C. N.; Gibbs-Davis J. M. Specific Cation Effects on the Bimodal Acid–Base Behavior of the Silica/Water Interface. J. Phys. Chem. Lett. 2012, 3, 1269–1274. 10.1021/jz300255x. PubMed DOI

Boamah M. D.; Ohno P. E.; Lozier E.; Van Ardenne J.; Geiger F. M. Specifics about Specific Ion Adsorption from Heterodyne-Detected Second Harmonic Generation. J. Phys. Chem. B 2019, 123, 5848–5856. 10.1021/acs.jpcb.9b04425. PubMed DOI

Biriukov D.; Kroutil O.; Předota M. Modeling of Solid–Liquid Interfaces Using Scaled Charges: Rutile (110) Surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23954–23966. 10.1039/C8CP04535F. PubMed DOI

Biriukov D.; Fibich P.; Předota M. Zeta Potential Determination from Molecular Simulations. J. Phys. Chem. C 2020, 124, 3159–3170. 10.1021/acs.jpcc.9b11371. DOI

Kroutil O.; Chval Z.; Skelton A. A.; Předota M. Computer Simulations of Quartz (101)–Water Interface over a Range of pH Values. J. Phys. Chem. C 2015, 119, 9274–9286. 10.1021/acs.jpcc.5b00096. DOI

Brkljača Z.; Namjesnik D.; Lützenkirchen J.; Předota M.; Preočanin T. Quartz/Aqueous Electrolyte Solution Interface: Molecular Dynamic Simulation and Interfacial Potential Measurements. J. Phys. Chem. C 2018, 122, 24025–24036. 10.1021/acs.jpcc.8b04035. DOI

Bouhadja M.; Skelton A. A. Dynamical Properties of Water and Ions at the Quartz (101)–Water Interface at a Range of Solution Conditions: A Classical Molecular Dynamics Study. J. Phys. Chem. C 2018, 122, 1535–1546. 10.1021/acs.jpcc.7b08214. DOI

Quezada G. R.; Rozas R. E.; Toledo P. G. Molecular Dynamics Simulations of Quartz (101)–Water and Corundum (001)–Water Interfaces: Effect of Surface Charge and Ions on Cation Adsorption, Water Orientation, and Surface Charge Reversal. J. Phys. Chem. C 2017, 121, 25271–25282. 10.1021/acs.jpcc.7b08836. DOI

Dewan S.; Carnevale V.; Bankura A.; Eftekhari-Bafrooei A.; Fiorin G.; Klein M. L.; Borguet E. Structure of Water at Charged Interfaces: A Molecular Dynamics Study. Langmuir 2014, 30, 8056–8065. 10.1021/la5011055. PubMed DOI

DelloStritto M. J.; Kubicki J. D.; Sofo J. O. Effect of Ions on H-Bond Structure and Dynamics at the Quartz (101)–Water Interface. Langmuir 2016, 32, 11353–11365. 10.1021/acs.langmuir.6b01719. PubMed DOI

Předota M.; Zhang Z.; Fenter P.; Wesolowski D. J.; Cummings P. T. Electric Double Layer at the Rutile (110) Surface. 2. Adsorption of Ions from Molecular Dynamics and X-Ray Experiments. J. Phys. Chem. B 2004, 108, 12061–12072. 10.1021/jp037199x. DOI

Zhang Z.; Fenter P.; Cheng L. R.; Sturchio N.; Bedzyk M.; Předota M.; Bandura A.; Kubicki J.; Lvov S.; Cummings P.; Chialvo A.; Ridley M.; Bénézeth P.; Anovitz L.; Palmer D.; Machesky M.; Wesolowski D. Ion Adsorption at the Rutile–Water Interface: Linking Molecular and Macroscopic Properties. Langmuir 2004, 20, 4954–4969. 10.1021/la0353834. PubMed DOI

Hiemstra T.; Van Riemsdijk W. H. On the Relationship between Charge Distribution, Surface Hydration, and the Structure of the Interface of Metal Hydroxides. J. Colloid Interface Sci. 2006, 301, 1–18. 10.1016/j.jcis.2006.05.008. PubMed DOI

Pfeiffer-Laplaud M.; Gaigeot M.-P. Electrolytes at the Hydroxylated (0001) α-Quartz/Water Interface: Location and Structural Effects on Interfacial Silanols by DFT-Based MD. J. Phys. Chem. C 2016, 120, 14034–14047. 10.1021/acs.jpcc.6b01819. DOI

Pfeiffer-Laplaud M.; Gaigeot M.-P.; Sulpizi M. pKa at Quartz/Electrolyte Interfaces. J. Phys. Chem. Lett. 2016, 7, 3229–3234. 10.1021/acs.jpclett.6b01422. PubMed DOI

Marchioro A.; Bischoff M.; Lütgebaucks C.; Biriukov D.; Předota M.; Roke S. Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order. J. Phys. Chem. C 2019, 123, 20393–20404. 10.1021/acs.jpcc.9b05482. PubMed DOI PMC

Bischoff M.; Biriukov D.; Předota M.; Roke S.; Marchioro A. Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface. J. Phys. Chem. C 2020, 124, 10961–10974. 10.1021/acs.jpcc.0c01158. PubMed DOI PMC

Ohshima H. A Simple Expression for Henry’s Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles. J. Colloid Interface Sci. 1994, 168, 269–271. 10.1006/jcis.1994.1419. DOI

Pullanchery S.; Kulik S.; Okur H. I.; de Aguiar H. B.; Roke S. On the Stability and Necessary Electrophoretic Mobility of Bare Oil Nanodroplets in Water. J. Chem. Phys. 2020, 152, 241104.10.1063/5.0009640. PubMed DOI

Lütgebaucks C.; Gonella G.; Roke S. Optical Label-Free and Model-Free Probe of the Surface Potential of Nanoscale and Microscopic Objects in Aqueous Solution. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94, 195410.10.1103/PhysRevB.94.195410. DOI

Gomopoulos N.; Lütgebaucks C.; Sun Q.; Macias-Romero C.; Roke S. Label-Free Second Harmonic and Hyper Rayleigh Scattering with High Efficiency. Opt. Express 2013, 21, 815–821. 10.1364/OE.21.000815. PubMed DOI

Gonella G.; Lütgebaucks C.; de Beer A. G. F.; Roke S. Second Harmonic and Sum-Frequency Generation from Aqueous Interfaces Is Modulated by Interference. J. Phys. Chem. C 2016, 120, 9165–9173. 10.1021/acs.jpcc.5b12453. DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI

Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium Ions in Aqueous Solutions: Accurate Force Field Description Aided by Ab Initio Molecular Dynamics and Neutron Scattering. J. Chem. Phys. 2018, 148, 222813.10.1063/1.5006779. PubMed DOI

Leontyev I.; Stuchebrukhov A. Accounting for Electronic Polarization in Non-Polarizable Force Fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI

Brown M. A.; Goel A.; Abbas Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chem., Int. Ed. 2016, 55, 3790–3794. 10.1002/anie.201512025. PubMed DOI

Ma E.; Ohno P. E.; Kim J.; Liu Y.; Lozier E. H.; Miller T. F.; Wang H.-F.; Geiger F. M. A New Imaginary Term in the Second-Order Nonlinear Susceptibility from Charged Interfaces. J. Phys. Chem. Lett. 2021, 12, 5649–5659. 10.1021/acs.jpclett.1c01103. PubMed DOI

Zdrali E.; Chen Y.; Okur H. I.; Wilkins D. M.; Roke S. The Molecular Mechanism of Nanodroplet Stability. ACS Nano 2017, 11, 12111–12120. 10.1021/acsnano.7b05100. PubMed DOI

Brown M. A.; Goel A.; Abbas Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chem., Int. Ed. 2016, 55, 3790–3794. 10.1002/anie.201512025. PubMed DOI

Ong S.; Zhao X.; Eisenthal K. B. Polarization of Water Molecules at a Charged Interface: Second Harmonic Studies of the Silica/Water Interface. Chem. Phys. Lett. 1992, 191, 327–335. 10.1016/0009-2614(92)85309-X. DOI

Diot J. L.; Joseph J.; Martin J. R.; Clechet P. pH Dependence of the Si/SiO2 Interface State Density for EOS Systems: Quasi-Static and AC Conductance Methods. J. Electroanal. Chem. Interfacial Electrochem. 1985, 193, 75–88. 10.1016/0022-0728(85)85053-1. DOI

Siu W. M.; Cobbold R. S. C. Basic Properties of the Electrolyte–SiO2–Si System: Physical and Theoretical Aspects. IEEE Trans. Electron Devices 1979, 26, 1805–1815. 10.1109/T-ED.1979.19690. DOI

Ohshima H.Theory of Colloid and Interfacial Electric Phenomena; Interface Science and Technology; Elsevier: Amsterdam, 2006; Vol. 12.

Sonnefeld J. Determination of Surface Charge Density Constants for Spherical Silica Particles Using a Linear Transformation. J. Colloid Interface Sci. 1996, 183, 597–599. 10.1006/jcis.1996.0583. PubMed DOI

Yamanaka J.; Hayashi Y.; Ise N.; Yamaguchi T. Control of the Surface Charge Density of Colloidal Silica by Sodium Hydroxide in Salt-Free and Low-Salt Dispersions. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, 55, 3028–3036. 10.1103/PhysRevE.55.3028. DOI

Cimas Á.; Tielens F.; Sulpizi M.; Gaigeot M.-P.; Costa D. The Amorphous Silica–Liquid Water Interface Studied by Ab Initio Molecular Dynamics (AIMD): Local Organization in Global Disorder. J. Phys.: Condens. Matter 2014, 26, 244106.10.1088/0953-8984/26/24/244106. PubMed DOI

Tuladhar A.; Dewan S.; Pezzotti S.; Brigiano F. S.; Creazzo F.; Gaigeot M.-P.; Borguet E. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces. J. Am. Chem. Soc. 2020, 142, 6991–7000. 10.1021/jacs.9b13273. PubMed DOI

Kubicki J. D.; Sofo J. O.; Skelton A. A.; Bandura A. V. A New Hypothesis for the Dissolution Mechanism of Silicates. J. Phys. Chem. C 2012, 116, 17479–17491. 10.1021/jp300623v. DOI

DelloStritto M. J.; Kubicki J.; Sofo J. O. Density Functional Theory Simulation of Hydrogen-Bonding Structure and Vibrational Densities of States at the Quartz (101)-Water Interface and Its Relation to Dissolution as a Function of Solution pH and Ionic Strength. J. Phys.: Condens. Matter 2014, 26, 244101.10.1088/0953-8984/26/24/244101. PubMed DOI

Marcus Y. Ionic Radii in Aqueous Solutions. Chem. Rev. 1988, 88, 1475–1498. 10.1021/cr00090a003. DOI

Zeron I. M.; Abascal J. L. F.; Vega C. A Force Field of Li+, Na+, K+, Mg2+, Ca2+, Cl–, and SO42- in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions. J. Chem. Phys. 2019, 151, 134504.10.1063/1.5121392. PubMed DOI

Porus M.; Labbez C.; Maroni P.; Borkovec M. Adsorption of Monovalent and Divalent Cations on Planar Water-Silica Interfaces Studied by Optical Reflectivity and Monte Carlo Simulations. J. Chem. Phys. 2011, 135, 064701.10.1063/1.3622858. PubMed DOI

Marcus Y. Thermodynamics of Solvation of Ions. Part 5.—Gibbs Free Energy of Hydration at 298.15 K. J. Chem. Soc., Faraday Trans. 1991, 87, 2995–2999. 10.1039/FT9918702995. DOI

Lee Y.; Thirumalai D.; Hyeon C. Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion. J. Am. Chem. Soc. 2017, 139, 12334–12337. 10.1021/jacs.7b04198. PubMed DOI

Argyris D.; Cole D. R.; Striolo A. Dynamic Behavior of Interfacial Water at the Silica Surface. J. Phys. Chem. C 2009, 113, 19591–19600. 10.1021/jp906150n. DOI

Asay D. B.; Kim S. H. Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem. B 2005, 109, 16760–16763. 10.1021/jp053042o. PubMed DOI

Du Q.; Freysz E.; Shen Y. R. Surface Vibrational Spectroscopic Studies of Hydrogen Bonding and Hydrophobicity. Science 1994, 264, 826–828. 10.1126/science.264.5160.826. PubMed DOI

Ostroverkhov V.; Waychunas G. A.; Shen Y. R. New Information on Water Interfacial Structure Revealed by Phase-Sensitive Surface Spectroscopy. Phys. Rev. Lett. 2005, 94, 046102.10.1103/PhysRevLett.94.046102. PubMed DOI

Du Q.; Freysz E.; Shen Y. R. Vibrational Spectra of Water Molecules at Quartz/Water Interfaces. Phys. Rev. Lett. 1994, 72, 238–241. 10.1103/PhysRevLett.72.238. PubMed DOI

Hassanali A. A.; Singer S. J. Model for the Water–Amorphous Silica Interface: The Undissociated Surface. J. Phys. Chem. B 2007, 111, 11181–11193. 10.1021/jp062971s. PubMed DOI

Shirai K.; Sugimoto T.; Watanabe K.; Haruta M.; Kurata H.; Matsumoto Y. Effect of Water Adsorption on Carrier Trapping Dynamics at the Surface of Anatase TiO2 Nanoparticles. Nano Lett. 2016, 16, 1323–1327. 10.1021/acs.nanolett.5b04724. PubMed DOI

Hosseinpour S.; Tang F.; Wang F.; Livingstone R. A.; Schlegel S. J.; Ohto T.; Bonn M.; Nagata Y.; Backus E. H. G. Chemisorbed and Physisorbed Water at the TiO2 /Water Interface. J. Phys. Chem. Lett. 2017, 8, 2195–2199. 10.1021/acs.jpclett.7b00564. PubMed DOI PMC

Soria F. A.; Di Valentin C. Reactive Molecular Dynamics Simulations of Hydration Shells Surrounding Spherical TiO2 Nanoparticles: Implications for Proton-Transfer Reactions. Nanoscale 2021, 13, 4151–4166. 10.1039/D0NR07503E. PubMed DOI

Zhou G.; Liu C.; Huang L. Molecular Dynamics Simulation of First-Adsorbed Water Layer at Titanium Dioxide Surfaces. J. Chem. Eng. Data 2018, 63, 2420–2429. 10.1021/acs.jced.7b00984. DOI

Zhao Z.; Li Z.; Zou Z. Structure and Properties of Water on the Anatase TiO2 (101) Surface: From Single-Molecule Adsorption to Interface Formation. J. Phys. Chem. C 2012, 116, 11054–11061. 10.1021/jp301468c. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...