Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis

. 2010 Dec ; 156 (Pt 12) : 3734-3743. [epub] 20100723

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20656780

Grantová podpora
49785 PHS HHS - United States

Both Mycoplasma hominis and Trichomonas vaginalis utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that M. hominis forms a stable intracellular relationship with T. vaginalis; hence, in this study we examined the interaction of two localized ADH pathways by comparing T. vaginalis strain SS22 with the laboratory-generated T. vaginalis strain SS22-MOZ2 infected with M. hominis MOZ2. The presence of M. hominis resulted in an approximately 16-fold increase in intracellular ornithine and a threefold increase in putrescine, compared with control T. vaginalis cultures. No change in the activity of enzymes of the ADH pathway could be demonstrated in SS22-MOZ2 compared with the parent SS22, and the increased production of ornithine could be attributed to the presence of M. hominis. Using metabolic flow analysis it was determined that the elasticity of enzymes of the ADH pathway in SS22-MOZ2 was unchanged compared with the parent SS22; however, the elasticity of ornithine decarboxylase (ODC) in SS22 was small, and it was doubled in SS22-MOZ2 cells. The potential benefit of this relationship to both T. vaginalis and M. hominis is discussed.

Zobrazit více v PubMed

Blanchard, A., Yanez, A., Dybvyg, K., Watson, H. L., Griffiths, G. & Cassel, G. H. (1993). Evaluation of intraspecies genetic variation within the 16S rRNA gene of M. hominis and detection by PCR. J Clin Microbiol 31, 1358–1361. PubMed PMC

Boyde, T. R. & Rahmatullah, M. (1980). Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 107, 424–431. PubMed

Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. & other authors (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207–212. PubMed PMC

Chen, K. C., Amsel, R., Eschenbach, D. A. & Holmes, K. K. (1982). Biochemical determination of vaginitis: determination of diamines in vaginal fluid. J Infect Dis 145, 337–345. PubMed

Cornish-Bowden, A. (2004). Fundamentals of Enzyme Kinetics, 3rd edn. London. : Portland Press.

Das, K., Butler, G. H., Kwiatkowski, V., Clark, A. D., Jr, Yadav, P. & Arnold, E. (2004). Crystal structure of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. Structure 12, 657–667. PubMed

Dessì, D., Delogu, G., Emonte, E., Catania, M. R., Fiori, P. L. & Rappelli, P. (2005). Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun 73, 1180–1186. PubMed PMC

Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43, 488–490. PubMed

Dillon, B. J., Holtsberg, F. W., Ensor, C. M., Bomalaski, J. S. & Clark, M. A. (2002). Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med Sci Monit 8, BR248–BR253. PubMed

Dolezal, P., Vánacová, S., Tachezy, J. & Hrdy, I. (2004). Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene 329, 81–92. PubMed

Driessen, A. J., Poolman, B., Kiewiet, R. & Konings, W. (1987). Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. Proc Natl Acad Sci U S A 84, 6093–6097. PubMed PMC

Fell, D. (1997). Measuring control coefficients. In Frontiers in Metabolism 2: Understanding the Control of Metabolism, pp. 135–195. Edited by Snell, K.. London. : Portland Press.

Fenske, J. D. & Kenny, G. E. (1976). Role of arginine deiminase in growth of Mycoplasma hominis. J Bacteriol 126, 501–510. PubMed PMC

Griswold, A., Chen, Y. Y., Snyder, J. A. & Burne, R. A. (2004). Characterization of the arginine deiminase operon in Streptococcus rattus FA-1. Appl Environ Microbiol 70, 1321–1327. PubMed PMC

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.

Linstead, D. & Cranshaw, M. A. (1983). The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol 8, 241–252. PubMed

Lowe, P. N. & Rowe, A. F. (1986). Aminotransferase activity in Trichomonas vaginalis. Mol Biochem Parasitol 21, 65–74. PubMed

Lu, X., Galkin, A., Herzberg, O. & Dunaway-Mariano, D. (2004). Arginine deiminase uses an active-site cysteine in nucleophilic catalysis of l-arginine hydrolysis. J Am Chem Soc 126, 5374–5375. PubMed

Noh, E. J., Kang, S. W., Shin, Y. J., Kim, D. C., Park, I. S., Kim, M. Y., Chun, B. G. & Min, B. H. (2002). Characterization of Mycoplasma arginine deiminase expressed in E. coli and inhibitory regulation of nitric oxide synthesis. Mol Cells 13, 137–143. PubMed

Pereyre, S., Sirand-Pugnet, P., Bevan, L., Charron, A., Renaudin, H., Barre, A., Avenaud, P., Jacob, D., Couloux, A. & other authors (2009). Life on arginine for Mycoplasma hominis. Clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet 5, e1000677. PubMed PMC

Rappelli, P., Addis, M. F., Carta, F. & Fiori, P. L. (1998). Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet 352, 1286. PubMed

Ringqvist, E., Palm, J. E., Skarin, H., Hehl, A. B., Weiland, M., Davids, B. J., Reiner, D. S., Griffiths, W. J., Eckmann, L. & other authors (2008). Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol 159, 85–91. PubMed PMC

Sarti, P., Fiori, P. L., Forte, E., Rappelli, P., Teixeira, M., Mastronicola, D., Sanciu, G., Giuffré, A. & Brunori, M. (2004). Trichomonas vaginalis degrades nitric oxide and expresses a flavorubredoxin-like protein: a new pathogenic mechanism? Cell Mol Life Sci 61, 618–623. PubMed PMC

Schofield, P. J., Costello, M., Edwards, M. R. & O'Sullivan, W. J. (1990). The arginine dihydrolase pathway is present in Giardia intestinalis. Int J Parasitol 20, 697–699. PubMed

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. PubMed

Swofford, D. L. (1998). Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882. PubMed PMC

Touz, M. C., Ropolo, A. S., Rivero, M. R., Vranych, C. V., Conrad, J. T., Svard, S. G. & Nash, T. E. (2008). Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. J Cell Sci 121, 2930–2938. PubMed PMC

Yarlett, N., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. (1993). Trichomonas vaginalis: characterization of ornithine decarboxylase. Biochem J 293, 487–493. PubMed PMC

Yarlett, N., Lindmark, D. G., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. (1994). Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Eukaryot Microbiol 41, 554–559. PubMed

Yarlett, N., Martinez, M. P., Moharrami, M. A. & Tachezy, J. (1996). The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78, 117–125. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...