Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35592180
PubMed Central
PMC9109959
DOI
10.1021/acs.jpcc.0c01158
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Colloidal nanoparticles exhibit unique size-dependent properties differing from their bulk counterpart, which can be particularly relevant for catalytic applications. To optimize surface-mediated chemical reactions, the understanding of the microscopic structure of the nanoparticle-liquid interface is of paramount importance. Here we use polarimetric angle-resolved second harmonic scattering (AR-SHS) to determine surface potential values as well as interfacial water orientation of ∼100 nm diameter amorphous TiO2 nanoparticles dispersed in aqueous solutions, without any initial assumption on the distribution of interfacial charges. We find three regions of different behavior with increasing NaCl concentration. At very low ionic strengths (0-10 μM), the Na+ ions are preferentially adsorbed at the TiO2 surface as inner-sphere complexes. At low ionic strengths (10-100 μM), a distribution of counterions equivalent to a diffuse layer is observed, while at higher ionic strengths (>100 μM), an additional layer of hydrated condensed ions is formed. We find a similar behavior for TiO2 nanoparticles in solutions of different basic pH. Compared to identically sized SiO2 nanoparticles, the TiO2 interface has a higher affinity for Na+ ions, which we further confirm with molecular dynamics simulations. With its ability to monitor ion adsorption at the surface with micromolar sensitivity and changes in the surface potential, AR-SHS is a powerful tool to investigate interfacial properties in a variety of catalytic and photocatalytic applications.
Zobrazit více v PubMed
Memming R.Semiconductor Electrochemistry, 2nd ed.; WILEY-VCH: Weinheim, 2015.
Sharon M.An Introduction to the Physics and Electrochemistry of Semiconductors: Fundamentals and Applications; Scrivener Publishing LLC, John Wiley & Sons, Inc.: Beverly, Hoboken, 2016.
Nanomaterial: Impacts on Cell Biology and Medicine; Capco D. G., Chen Y., Eds.; Advances in Experimental Medicine and Biology; Springer: New York, 2014.
Application of Titanium Dioxide; Janus M., Ed.; InTech: Rijeka, 2017.
Braun J. H.; Baidins A.; Marganski R. E. TiO2 Pigment Technology: A Review. Prog. Org. Coat. 1992, 20, 105–138. 10.1016/0033-0655(92)80001-D. DOI
Banerjee A. N. The Design, Fabrication, and Photocatalytic Utility of Nanostructured Semiconductors: Focus on TiO2-Based Nanostructures. Nanotechnol., Sci. Appl. 2011, 4, 35–65. 10.2147/NSA.S9040. PubMed DOI PMC
Fujishima F. TiO2 Photocatalysis Fundamentals and Applications. Revolut. Clean. Technol. 1999, 14–21.
Application of Nanotechnology in Membranes for Water Treatment, 1st ed.; Figoli A., Hoinkis J., Altinkaya S. A., Bundschuh J., Eds.; CRC Press: Boca Raton, 2017.
Milošević I.; Rtimi S.; Jayaprakash A.; van Driel B.; Greenwood B.; Aimable A.; Senna M.; Bowen P. Synthesis and Characterization of Fluorinated Anatase Nanoparticles and Subsequent N-Doping for Efficient Visible Light Activated Photocatalysis. Colloids Surf., B 2018, 171, 445–450. 10.1016/j.colsurfb.2018.07.035. PubMed DOI
Náfrádi B.; Náfrádi G.; Martin-Hamka C.; Forró L.; Horváth E. Superior Water Sheeting Effect on Photocatalytic Titania Nanowire Coated Glass. Langmuir 2017, 33, 9043–9049. 10.1021/acs.langmuir.7b01790. PubMed DOI
Application of Titanium Dioxide Photocatalysis to Construction Materials: State-of-the-Art Report of the RILEM Technical Committee 194-TDP; Ohama Y., van Gemert D., Eds.; RILEM state of the art reports; Springer: Dordrecht, 2011.
Photoelectrochemical Hydrogen Production; van de Krol R., Grätzel M., Eds.; Electronic Materials: Science & Technology; Springer: New York, 2012.
Bagotskiĭ V. S.; Skundin A. M.; Volfkovich Y. V.. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors; John Wiley & Sons, Inc.: Hoboken, NJ, 2015.
Fujishima A.; Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. 10.1038/238037a0. PubMed DOI
Ohshima H.Theory of Colloid and Interfacial Electric Phenomena; Interface Science and Technology; Elsevier, Academic Press: Amsterdam, 2006; Vol. 12.
Hiemenz P. C.; Rajagopalan R.. Principles of Colloid and Surface Chemistry, 3rd ed.; Marcel Dekker: New York, 1997.
Hunter R. J.Zeta Potential in Colloid Science. Principles and Applications; Academic Press: London, 1981.
Hunter R. J.Foundations of Colloid Science, 2nd ed.; Oxford University Press: Oxford, 2000.
Fundamentals of Interface and Colloid Science; Lyklema J., Ed.; Academic Press: London, 2005; Vol. 5.
Schmickler W.; Santos E.. Interfacial Electrochemistry, 2nd ed.; Springer: Berlin, Heidelberg, 2010.
Ataka K.; Yotsuyanagi T.; Osawa M. Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. 1996, 100, 10664–10672. 10.1021/jp953636z. DOI
Bockris J. O.; Khan S. U. M.. Surface Electrochemistry: A Molecular Level Approach; Springer Science & Business Media: Berlin, Heidelberg, 2013.
Lange E.; Miščenko K. P. Zur Thermodynamik Der Ionensolvatation. Ztg. Für Phys. Chem. A 1930, 149, 1–41.
YazdanYar A.; Aschauer U.; Bowen P. Interaction of Biologically Relevant Ions and Organic Molecules with Titanium Oxide (Rutile) Surfaces: A Review on Molecular Dynamics Studies. Colloids Surf., B 2018, 161, 563–577. 10.1016/j.colsurfb.2017.11.004. PubMed DOI
Gono P.; Ambrosio F.; Pasquarello A. Effect of the Solvent on the Oxygen Evolution Reaction at the TiO2–Water Interface. J. Phys. Chem. C 2019, 123, 18467–18474. 10.1021/acs.jpcc.9b05015. DOI
Fedkin M. V.; Zhou X. Y.; Kubicki J. D.; Bandura A. V.; Lvov S. N.; Machesky M. L.; Wesolowski D. J. High Temperature Microelectrophoresis Studies of the Rutile/Aqueous Solution Interface. Langmuir 2003, 19, 3797–3804. 10.1021/la0268653. DOI
Předota M.; Machesky M. L.; Wesolowski D. J. Molecular Origins of the Zeta Potential. Langmuir 2016, 32, 10189–10198. 10.1021/acs.langmuir.6b02493. PubMed DOI
Lützenkirchen J.; Preočanin T.; Kovačević D.; Tomišić V.; Lövgren L.; Kallay N. Potentiometric Titrations as a Tool for Surface Charge Determination. Croat. Chem. Acta 2012, 85, 391–417. 10.5562/cca2062. DOI
Holmberg J. P.; Ahlberg E.; Bergenholtz J.; Hassellöv M.; Abbas Z. Surface Charge and Interfacial Potential of Titanium Dioxide Nanoparticles: Experimental and Theoretical Investigations. J. Colloid Interface Sci. 2013, 407, 168–176. 10.1016/j.jcis.2013.06.015. PubMed DOI
Machesky M. L.; Wesolowski D. J.; Palmer D. A.; Ichiro-Hayashi K. Potentiometric Titrations of Rutile Suspensions to 250°C. J. Colloid Interface Sci. 1998, 200, 298–309. 10.1006/jcis.1997.5401. DOI
Akratopulu K. Ch.; Kordulis C.; Lycourghiotis A. Effect of Temperature on the Point of Zero Charge and Surface Charge of TiO2. J. Chem. Soc., Faraday Trans. 1990, 86, 3437.10.1039/ft9908603437. DOI
Yates D. E.The Structure of the Oxide/Aqueous Electrolyte Interface. Ph.D. Dissertation. Faculty of Science, Chemistry, University Melbourne, 1975.
Nonnenmacher M.; O’Boyle M. P.; Wickramasinghe H. K. Kelvin Probe Force Microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923. 10.1063/1.105227. DOI
Umeda K.; Kobayashi K.; Oyabu N.; Hirata Y.; Matsushige K.; Yamada H. Practical Aspects of Kelvin-Probe Force Microscopy at Solid/Liquid Interfaces in Various Liquid Media. J. Appl. Phys. 2014, 116, 134307.10.1063/1.4896881. DOI
Collins L.; Jesse S.; Kilpatrick J. I.; Tselev A.; Okatan M. B.; Kalinin S. V.; Rodriguez B. J. Kelvin Probe Force Microscopy in Liquid Using Electrochemical Force Microscopy. Beilstein J. Nanotechnol. 2015, 6, 201–214. 10.3762/bjnano.6.19. PubMed DOI PMC
Brown M. A.; Abbas Z.; Kleibert A.; Green R. G.; Goel A.; May S.; Squires T. M. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X 2016, 6, 011007.10.1103/PhysRevX.6.011007. DOI
Brown M. A.; Goel A.; Abbas Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chem., Int. Ed. 2016, 55, 3790–3794. 10.1002/anie.201512025. PubMed DOI
Brown M. A.; Beloqui Redondo A.; Sterrer M.; Winter B.; Pacchioni G.; Abbas Z.; van Bokhoven J. A. Measure of Surface Potential at the Aqueous–Oxide Nanoparticle Interface by XPS from a Liquid Microjet. Nano Lett. 2013, 13, 5403–5407. 10.1021/nl402957y. PubMed DOI
Brown M. A.; Jordan I.; Beloqui Redondo A.; Kleibert A.; Wörner H. J.; van Bokhoven J. A. In Situ Photoelectron Spectroscopy at the Liquid/Nanoparticle Interface. Surf. Sci. 2013, 610, 1–6. 10.1016/j.susc.2013.01.012. DOI
Makowski M. J.; Galhenage R. P.; Langford J.; Hemminger J. C. Liquid-Jet X-Ray Photoelectron Spectra of TiO2 Nanoparticles in an Aqueous Electrolyte Solution. J. Phys. Chem. Lett. 2016, 7, 1732–1735. 10.1021/acs.jpclett.6b00445. PubMed DOI
Ali H.; Seidel R.; Bergmann A.; Winter B. Electronic Structure of Aqueous-Phase Anatase Titanium Dioxide Nanoparticles Probed by Liquid Jet Photoelectron Spectroscopy. J. Mater. Chem. A 2019, 7, 6665–6675. 10.1039/C8TA09414D. DOI
Shen Y. R. Surfaces Probed by Nonlinear Optics. Surf. Sci. 1994, 299–300, 551–562. 10.1016/0039-6028(94)90681-5. DOI
Shen Y. R. Surface Properties Probed by Second-Harmonic and Sum-Frequency Generation. Nature 1989, 337, 519–525. 10.1038/337519a0. DOI
Wang C. C. Second-Harmonic Generation of Light at the Boudary of an Isotropic Medium. Phys. Rev. 1969, 178, 1457–1461. 10.1103/PhysRev.178.1457. DOI
Boyd R.Nonlinear Optics, 3rd ed.; Academic Press, Elsevier Science: Amsterdam, 2008.
Wang H.; Yan E. C. Y.; Borguet E.; Eisenthal K. B. Second Harmonic Generation from the Surface of Centrosymmetric Particles in Bulk Solution. Chem. Phys. Lett. 1996, 259, 15–20. 10.1016/0009-2614(96)00707-5. DOI
Liu Y.; Dadap J. I.; Zimdars D.; Eisenthal K. B. Study of Interfacial Charge-Transfer Complex on TiO2 Particles in Aqueous Suspension by Second-Harmonic Generation. J. Phys. Chem. B 1999, 103, 2480–2486. 10.1021/jp984288e. DOI
Yan E. C. Y.; Liu Y.; Eisenthal K. B. New Method for Determination of Surface Potential of Microscopic Particles by Second Harmonic Generation. J. Phys. Chem. B 1998, 102, 6331–6336. 10.1021/jp981335u. DOI
Yang N.; Angerer W. E.; Yodh A. G. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles. Phys. Rev. Lett. 2001, 87, 103902.10.1103/PhysRevLett.87.103902. PubMed DOI
Dadap J. I.; de Aguiar H. B.; Roke S. Nonlinear Light Scattering from Clusters and Single Particles. J. Chem. Phys. 2009, 130, 214710.10.1063/1.3141383. PubMed DOI
de Beer A. G. F.; Roke S.; Dadap J. I. Theory of Optical Second-Harmonic and Sum-Frequency Scattering from Arbitrarily Shaped Particles. J. Opt. Soc. Am. B 2011, 28, 1374–1384. 10.1364/JOSAB.28.001374. DOI
de Beer A.; Campen R. K.; Roke S. Separating Surface Structure and Surface Change with Second-Harmonic and Sum-Frequency Scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 235431.10.1103/PhysRevB.82.235431. DOI
Gonella G.; Lütgebaucks C.; de Beer A. G. F.; Roke S. Second Harmonic and Sum-Frequency Generation from Aqueous Interfaces Is Modulated by Interference. J. Phys. Chem. C 2016, 120, 9165–9173. 10.1021/acs.jpcc.5b12453. DOI
Lütgebaucks C.; Gonella G.; Roke S. Optical Label-Free and Model-Free Probe of the Surface Potential of Nanoscale and Microscopic Objects in Aqueous Solution. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94, 195410.10.1103/PhysRevB.94.195410. DOI
Lütgebaucks C.; Macias-Romero C.; Roke S. Characterization of the Interface of Binary Mixed DOPC:DOPS Liposomes in Water: The Impact of Charge Condensation. J. Chem. Phys. 2017, 146, 044701.10.1063/1.4974084. PubMed DOI
Marchioro A.; Bischoff M.; Lütgebaucks C.; Biriukov D.; Předota M.; Roke S. Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order. J. Phys. Chem. C 2019, 123, 20393–20404. 10.1021/acs.jpcc.9b05482. PubMed DOI PMC
Electrochemical Dictionary, 2nd ed.; Bard A. J., Inzelt G., Scholz F., Eds.; Springer: Heidelberg, 2012.
Lide D. R.Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, 2004.
Roke S.; Bonn M.; Petukhov A. V. Nonlinear Optical Scattering: The Concept of Effective Susceptibility. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 115106.10.1103/PhysRevB.70.115106. DOI
de Beer A. G. F.; Roke S. Obtaining Molecular Orientation from Second Harmonic and Sum Frequency Scattering Experiments in Water: Angular Distribution and Polarization Dependence. J. Chem. Phys. 2010, 132, 234702.10.1063/1.3429969. PubMed DOI
Gomopoulos N.; Lütgebaucks C.; Sun Q.; Macias-Romero C.; Roke S. Label-Free Second Harmonic and Hyper Rayleigh Scattering with High Efficiency. Opt. Express 2013, 21, 815.10.1364/OE.21.000815. PubMed DOI
Nihonyanagi S.; Yamaguchi S.; Tahara T. Direct Evidence for Orientational Flip-Flop of Water Molecules at Charged Interfaces: A Heterodyne-Detected Vibrational Sum Frequency Generation Study. J. Chem. Phys. 2009, 130, 204704.10.1063/1.3135147. PubMed DOI
Hale G. M.; Querry M. R. Optical Constants of Water in the 200nm to 200μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. 10.1364/AO.12.000555. PubMed DOI
Martin P. Review of the Filtered Vacuum Arc Process and Materials Deposition. Thin Solid Films 2001, 394, 1–14. 10.1016/S0040-6090(01)01169-5. DOI
Malitson I. H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. 10.1364/JOSA.55.001205. DOI
Biriukov D.; Kroutil O.; Předota M. Modeling of Solid–Liquid Interfaces Using Scaled Charges: Rutile (110) Surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23954–23966. 10.1039/C8CP04535F. PubMed DOI
Zhang Z.; Fenter P.; Sturchio N. C.; Bedzyk M. J.; Machesky M. L.; Wesolowski D. J. Structure of Rutile TiO2 (110) in Water and 1 Molal Rb+ at PH 12: Inter-Relationship among Surface Charge, Interfacial Hydration Structure, and Substrate Structural Displacements. Surf. Sci. 2007, 601, 1129–1143. 10.1016/j.susc.2006.12.007. DOI
Tan S.; Feng H.; Zheng Q.; Cui X.; Zhao J.; Luo Y.; Yang J.; Wang B.; Hou J. G. Interfacial Hydrogen-Bonding Dynamics in Surface-Facilitated Dehydrogenation of Water on TiO2(110). J. Am. Chem. Soc. 2020, 142, 826–834. 10.1021/jacs.9b09132. PubMed DOI
Kroutil O.; Chval Z.; Skelton A. A.; Předota M. Computer Simulations of Quartz (101)–Water Interface over a Range of PH Values. J. Phys. Chem. C 2015, 119, 9274–9286. 10.1021/acs.jpcc.5b00096. DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI
Leontyev I.; Stuchebrukhov A. Accounting for Electronic Polarization in Non-Polarizable Force Fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI
Zeta Potential - An Introduction in 30 minutes; Malvern Instruments, 2015.
Beranek R. Photo)Electrochemical Methods for the Determination of the Band Edge Positions of TiO2 -Based Nanomaterials. Adv. Phys. Chem. 2011, 2011, 1–20. 10.1155/2011/786759. DOI
Barisik M.; Atalay S.; Beskok A.; Qian S. Size Dependent Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 2014, 118, 1836–1842. 10.1021/jp410536n. DOI
Shi Y.-R.; Ye M.-P.; Du L.-C.; Weng Y.-X. Experimental Determination of Particle Size-Dependent Surface Charge Density for Silica Nanospheres. J. Phys. Chem. C 2018, 122, 23764–23771. 10.1021/acs.jpcc.8b07566. DOI
Alan B. O.; Barisik M.; Ozcelik H. G. Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 2020, 124, 7274–7286. 10.1021/acs.jpcc.0c00120. DOI
Diebold U. Perspective: A Controversial Benchmark System for Water-Oxide Interfaces: H2O/TiO2 (110). J. Chem. Phys. 2017, 147, 040901.10.1063/1.4996116. PubMed DOI
Diebold U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. 10.1016/S0167-5729(02)00100-0. DOI
Bourikas K.; Kordulis C.; Lycourghiotis A. Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid–Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts. Chem. Rev. 2014, 114, 9754–9823. 10.1021/cr300230q. PubMed DOI
Mueller R.; Kammler H. K.; Wegner K.; Pratsinis S. E. OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19, 160–165. 10.1021/la025785w. DOI
Zhuravlev L. T. Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas. Langmuir 1987, 3, 316–318. 10.1021/la00075a004. DOI
Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints