Novel technique for the ultra-sensitive detection of hazardous contaminants using an innovative sensor integrated with a bioreactor

. 2024 Jun 04 ; 14 (1) : 12836. [epub] 20240604

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38834660

Grantová podpora
16.16.220.842 AGH University of Krakow
CZ.02.1.01/0.0/0.0/16_026/0008446 European Regional Development Fund-Project "SINGING PLANT"

Odkazy

PubMed 38834660
PubMed Central PMC11150263
DOI 10.1038/s41598-024-63631-6
PII: 10.1038/s41598-024-63631-6
Knihovny.cz E-zdroje

This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases, along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.

Zobrazit více v PubMed

Zhang, L. et al. Role of bioreactors in microbial biomass and energy conversion. In Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology (ed. Liao Q., Chang J., Herrmann C., Xia A.) 39–78 (Springer, Singapore, 2018).

Gupta PL, Lee S-M, Choi H-J. A mini review: photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015;31:1409–1417. doi: 10.1007/s11274-015-1892-4. PubMed DOI

Menetrez MY. An overview of algae biofuel production and potential environmental impact. Environ. Sci. Technol. 2012;46:7073–7085. doi: 10.1021/es300917r. PubMed DOI

Anto S, et al. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere. 2020;242:125079. doi: 10.1016/j.chemosphere.2019.125079. PubMed DOI

Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJO. Wastewater treatment using filamentous algae—A review. Bioresour. Technol. 2020;298:122556. doi: 10.1016/j.biortech.2019.122556. PubMed DOI

Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci. Total Environ. 2022;806:150585. doi: 10.1016/j.scitotenv.2021.150585. PubMed DOI

Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021;752:142168. doi: 10.1016/j.scitotenv.2020.142168. PubMed DOI

Tsai DD-W, Chen PH, Ramaraj R. The potential of carbon dioxide capture and sequestration with algae. Ecol. Eng. 2017;98:17–23. doi: 10.1016/j.ecoleng.2016.10.049. DOI

Sarwer A, et al. Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ. Chem. Lett. 2022;20:2797–2851. doi: 10.1007/s10311-022-01458-1. DOI

Naina Mohamed, S., Jayabalan, T. & Muthukumar, K. Simultaneous bioenergy generation and carbon dioxide sequestration from food wastewater using algae microbial fuel cell. Energy Sour. Part A Recov. Util. Environ. Effects45, 2913–2921 (2023).

Bishop WM, Zubeck HM. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J. Nutr. Food Sci. 2012;2:1–6.

Pereira, L. Therapeutic and Nutritional Uses of Algae. (CRC Press, 2018).

Galasso C, et al. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients. 2019;11:1226. doi: 10.3390/nu11061226. PubMed DOI PMC

Delasoie J, Rossier J, Haeni L, Rothen-Rutishauser B, Zobi F. Slow-targeted release of a ruthenium anticancer agent from vitamin B 12 functionalized marine diatom microalgae. Dalton Trans. 2018;47:17221–17232. doi: 10.1039/C8DT02914H. PubMed DOI

Aziz E, et al. An overview on red algae bioactive compounds and their pharmaceutical applications. J. Complement Integr. Med. 2020;17:20190203. doi: 10.1515/jcim-2019-0203. PubMed DOI

Najiha Badar, S., Mohammad, M., Emdadi, Z. & Yaakob, Z. Algae and their growth requirements for bioenergy: A review. Biofuels12, 307–325 (2021).

Oruganti RK, et al. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered. 2022;13:10412–10453. doi: 10.1080/21655979.2022.2056823. PubMed DOI PMC

Sukenik A, et al. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat. Microb. Ecol. 2009;56:297–308. doi: 10.3354/ame01309. DOI

Dunn ZD, et al. Automated online-sampling multidimensional liquid chromatography with feedback-control capability as a framework for real-time monitoring of mAb critical quality attributes in multiple bioreactors. Anal. Chem. 2023;95:18130–18138. doi: 10.1021/acs.analchem.3c03528. PubMed DOI

O’Mara P, Farrell A, Bones J, Twomey K. Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta. 2018;176:130–139. doi: 10.1016/j.talanta.2017.07.088. PubMed DOI

Cacopardo L, et al. Real-time cellular impedance monitoring and imaging of biological barriers in a dual-flow membrane bioreactor. Biosens. Bioelectron. 2019;140:111340. doi: 10.1016/j.bios.2019.111340. PubMed DOI

Antal T, et al. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol. Plant. 2019;165:476–486. doi: 10.1111/ppl.12693. PubMed DOI

Thoré ESJ, Schoeters F, Spit J, Van Miert S. Real-time monitoring of microalgal biomass in pilot-scale photobioreactors using nephelometry. Processes. 2021;9:1530. doi: 10.3390/pr9091530. DOI

Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI

Murchie EH, Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI

Bhagooli R, et al. Chlorophyll fluorescence—A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Mar. Pollut. Bull. 2021;165:112059. doi: 10.1016/j.marpolbul.2021.112059. PubMed DOI

Mohammad Aslam, S., Patil, P. P., Vass, I. & Szabó, M. Heat-induced photosynthetic responses of Symbiodiniaceae revealed by flash-induced fluorescence relaxation kinetics. Front. Mar. Sci.9, 932355 (2022).

Miszalski Z, et al. Photosynthetic activity of vascular bundles in Plantago media leaves. J. Plant Physiol. 2016;204:36–43. doi: 10.1016/j.jplph.2016.06.012. PubMed DOI

Patil, P., Mohammad Aslam, S., Vass, I. & Szabó, M. Characterization of the wave phenomenon of flash-induced chlorophyll fluorescence in Chlamydomonas reinhardtii. Photosynth. Res.152, 235-244 (2022). PubMed PMC

Vass, I., Kirilovsky, D. & Etienne, A.-L. UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry38, 12786–12794 (1999). PubMed

Crofts AR, Baroli I, Kramer D, Taoka S. Kinetics of electron transfer between Qa and Qb in wild type and herbicide-resistant mutants of Chlamydomonas reinhardtii. 1993;48:259–266.

Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol. Oceanogr. 2021;66:1–13. doi: 10.1002/lno.11581. DOI

Luo J, Chen W, Song H, Liu J. Antifouling behaviour of a photocatalytic modified membrane in a moving bed bioreactor for wastewater treatment. J. Clean. Prod. 2020;256:120381. doi: 10.1016/j.jclepro.2020.120381. DOI

Muffler, K. et al. Application of biofilm bioreactors in white biotechnology. In Productive Biofilms (eds. Muffler, K. & Ulber, R.) 123–161 (Springer International Publishing, Cham, 2014). PubMed

Bhoj Y, Tharmavaram M, Rawtani D. A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chem. Phys. Impact. 2021;2:100008. doi: 10.1016/j.chphi.2020.100008. DOI

Bixler GD, Bhushan B. Biofouling: Lessons from nature. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012;370:2381–2417. doi: 10.1098/rsta.2011.0502. PubMed DOI

Chambers LD, Stokes KR, Walsh FC, Wood RJK. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 2006;201:3642–3652. doi: 10.1016/j.surfcoat.2006.08.129. DOI

Jellali R, et al. Antifouling action of polyisoprene-based coatings by inhibition of photosynthesis in microalgae. Environ. Sci. Technol. 2013;47:6573–6581. doi: 10.1021/es400161t. PubMed DOI

Guardiola F, Cuesta A, Meseguer J, Esteban M. Risks of using antifouling biocides in aquaculture. Int. J. Mol. Sci. 2012;13:1541–1560. doi: 10.3390/ijms13021541. PubMed DOI PMC

Adrees M, et al. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015;22:8148–8162. doi: 10.1007/s11356-015-4496-5. PubMed DOI

Babula P, et al. The importance and effects of copper on plants. Listy Cukrovarnické a Reparské. 2010;126:397.

Can AA, Isik G, Yücel E. The effects of copper (CuCb) on mitotic cell division of lebanon cedar (Cedrus libani) Fresenius Environ. Bull. 2016;25:4324–4326.

Kiaune L, Singhasemanon N. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Rev. Environ. Contam. Toxicol. 2011;213:1–26. PubMed

Lopez JS, Lee L, Mackey KRM. The toxicity of copper to Crocosphaera watsonii and other marine phytoplankton: A systematic review. Front. Mar. Sci. 2019;5:511. doi: 10.3389/fmars.2018.00511. DOI

Cavalletti E, et al. Copper effect on microalgae: Toxicity and bioremediation strategies. Toxics. 2022;10:527. doi: 10.3390/toxics10090527. PubMed DOI PMC

PubChem Compound Summary for CID 5284484, Zineb. In National Library of Medicine (US), National Center for Biotechnology Information (2004).

Soon ZY, et al. Zinc Pyrithione (ZnPT) as an antifouling biocide in the marine environment—a literature review of its toxicity, environmental fates, and analytical methods. Water Air Soil Pollut. 2019;230:310. doi: 10.1007/s11270-019-4361-0. DOI

European Union Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Off. J. Eur. Union L167, 1–123 (2012).

Yebra DM, Kiil S, Dam-Johansen K. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004;50:75–104. doi: 10.1016/j.porgcoat.2003.06.001. DOI

Löschau M, Krätke R. Efficacy and toxicity of self-polishing biocide-free antifouling paints. Environ. Pollut. 2005;138:260–267. doi: 10.1016/j.envpol.2005.04.015. PubMed DOI

Bressy C, et al. What governs marine fouling assemblages on chemically-active antifouling coatings? Prog. Org. Coat. 2022;164:106701. doi: 10.1016/j.porgcoat.2021.106701. DOI

Nedbal L, Trtílek M, Červený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol. Bioeng. 2008;100:902–910. doi: 10.1002/bit.21833. PubMed DOI

Bischoff HW. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ. of Texas Publ. 1963;6318:1.

Trtílek M, Kramer DM, Koblížek M, Nedbal L. Dual-modulation LED kinetic fluorometer. J. Lumin. 1997;72–74:597–599. doi: 10.1016/S0022-2313(97)00066-5. DOI

Genty, B., Briantais, J.-M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta (BBA) Gen. Subjects990, 87–92 (1989).

Peter AP, et al. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renew. Sustain. Energy Rev. 2022;154:111852. doi: 10.1016/j.rser.2021.111852. DOI

Ahmad, I., Abdullah, N., Koji, I., Yuzir, A. & Muhammad, S. E. Evolution of photobioreactors: a review based on microalgal perspective. In IOP Conf. Ser.: Mater. Sci. Eng. 1142, 012004 (2021).

Borowiak, D. & Krzywonos, M. Bioenergy, biofuels, lipids and pigments—Research trends in the use of microalgae grown in photobioreactors. Energies (Basel)15, 5357 (2022).

Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. Prob. Photosynth. Mech. Regul. Adapt. 2000;25:445–483.

Orzechowska A, Trtílek M, Tokarz K, Rozpądek P. A study of light-induced stomatal response in Arabidopsis using thermal imaging. Biochem. Biophys. Res. Commun. 2020;533:1129–1134. doi: 10.1016/j.bbrc.2020.09.020. PubMed DOI

Orzechowska A, et al. Thermal analysis of stomatal response under salinity and high light. Int. J. Mol. Sci. 2021;22:4663. doi: 10.3390/ijms22094663. PubMed DOI PMC

Nomura M, et al. Effects of antifouling compounds on the growth of macroalgae Undaria pinnatifida. Chemosphere. 2023;312:137141. doi: 10.1016/j.chemosphere.2022.137141. PubMed DOI

Suresh Kumar K, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol. Environ. Saf. 2014;104:51–71. doi: 10.1016/j.ecoenv.2014.01.042. PubMed DOI

Lazár D, Stirbet A, Björn LO, Govindjee G. Light quality, oxygenic photosynthesis and more. Photosynthetica. 2022;60:23–56. doi: 10.32615/ps.2021.055. DOI

Ruan G, Mi W, Yin X, Song G, Bi Y. Molecular responses mechanism of Synechocystis sp. PCC 6803 to cadmium stress. Water (Basel) 2022;14:4032.

Zhang X, et al. 2-Hydroxychalcone as a novel natural photosynthesis inhibitor against bloom-forming cyanobacteria. J. Agric. Food Chem. 2022;70:15069–15079. doi: 10.1021/acs.jafc.2c06665. PubMed DOI

Morschett H, Schiprowski D, Rohde J, Wiechert W, Oldiges M. Comparative evaluation of phototrophic microtiter plate cultivation against laboratory-scale photobioreactors. Bioprocess Biosyst. Eng. 2017;40:663–673. doi: 10.1007/s00449-016-1731-5. PubMed DOI

Fret J, et al. Combining medium recirculation with alternating the microalga production strain: A laboratory and pilot scale cultivation test. Algal. Res. 2020;46:101763. doi: 10.1016/j.algal.2019.101763. DOI

Brand LE, Sunda WG, Guillard RRL. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 1986;96:225–250. doi: 10.1016/0022-0981(86)90205-4. DOI

Cid A, Herrero C, Torres E, Abalde J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat. Toxicol. 1995;31:165–174. doi: 10.1016/0166-445X(94)00071-W. DOI

Hadjoudja S, et al. Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquat. Toxicol. 2009;94:255–264. doi: 10.1016/j.aquatox.2009.07.007. PubMed DOI

Wang JB, et al. Marine environmental risk assessment method for active substances used in antifouling systems on ships in China. Adv. Mat. Res. 2014;864–867:962–972.

Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. BioMetals. 2013;26:731–740. doi: 10.1007/s10534-013-9648-9. PubMed DOI

Chen H, et al. Effect of trace elements in the toxicity of copper to Chlamydomonas reinhardtii. Environ. Sci. Process Impacts. 2022;24:576–585. doi: 10.1039/D1EM00521A. PubMed DOI

Ye M, et al. Copper and zinc interact significantly in their joint toxicity to Chlamydomonas reinhardtii: Insights from physiological and transcriptomic investigations. Sci. Total Environ. 2023;905:167122. doi: 10.1016/j.scitotenv.2023.167122. PubMed DOI

Crofts, A. R. & Wraight, C. A. The electrochemical domain of photosynthesis. Biochim. Biophys. Acta (BBA) Rev. Bioenerg.726, 149–185 (1983).

Cser K, Diner BA, Nixon PJ, Vass I. The role of D1-Ala344 in charge stabilization and recombination in Photosystem II. Photochem. Photobiol. Sci. 2005;4:1049–1054. doi: 10.1039/b512354m. PubMed DOI

Renger G, et al. Fluorescence and spectroscopic studies of exciton trapping and electron transfer in photosystem II of higher plants. Funct. Plant Biol. 1995;22:167–181. doi: 10.1071/PP9950167. DOI

Mamedov F, Stefansson H, Albertsson P-Å, Styring S. Photosystem II in different parts of the thylakoid membrane: A functional comparison between different domains. Biochemistry. 2000;39:10478–10486. doi: 10.1021/bi992877k. PubMed DOI

Volgusheva A, Kukarskikh G, Krendeleva T, Rubin A, Mamedov F. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv. 2014;5:1.

Orzechowska A, Czaderna-Lekka A, Trtílek M, Rusiniak P. Fluorescence analysis of biocide efficiency in antifouling coatings against cyanobacteria. Int. J. Mol. Sci. 2023;24:4972. doi: 10.3390/ijms24054972. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...