Thermal Analysis of Stomatal Response under Salinity and High Light
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16.16.220.842
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science
PubMed
33925054
PubMed Central
PMC8124565
DOI
10.3390/ijms22094663
PII: ijms22094663
Knihovny.cz E-zdroje
- Klíčová slova
- evapotranspiration, excessive light, infrared thermal imaging, light-induced temperature kinetics, photosystem II efficiency, salinity, stomatal conductance,
- MeSH
- Arabidopsis účinky léků fyziologie účinky záření MeSH
- chlorid sodný aplikace a dávkování MeSH
- fotosystém II (proteinový komplex) účinky léků metabolismus účinky záření MeSH
- fyziologický stres MeSH
- kinetika MeSH
- osmotický tlak MeSH
- průduchy rostlin účinky léků fyziologie účinky záření MeSH
- salinita MeSH
- světlo MeSH
- termografie metody MeSH
- transpirace rostlin účinky léků fyziologie účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- fotosystém II (proteinový komplex) MeSH
A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.
Malopolska Centre of Biotechnology Jagiellonian University Gronostajowa 7a 30 387 Kraków Poland
Photon Systems Instruments Drásov 470 664 24 Drásov Czech Republic
Zobrazit více v PubMed
Jones H.G., Archer N., Rotenberg E., Casa R. Radiation measurement for plant ecophysiology. J. Exp. Bot. 2003;54:879–889. doi: 10.1093/jxb/erg116. PubMed DOI
Bison P., Grinzato E. Fast estimate of solid materials thermal conductivity by IR thermography. Qirt J. 2010;7:17–34. doi: 10.3166/qirt.7.17-34. DOI
Jafari M., Minaei S., Safaie N. Detection of pre-symptomatic rose powdery-mildew and gray-mold diseases based on thermal vision. Infrared Phys. Technol. 2017;85:170–183. doi: 10.1016/j.infrared.2017.04.023. DOI
Sagan V., Maimaitijiang M., Sidike P., Eblimit K., Peterson K., Hartling S., Esposito F., Khanal K., Newcomb M., Pauli D., et al. UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap cameras. Remote Sens. 2019;11:330. doi: 10.3390/rs11030330. DOI
Sagakami T., Kubo S. Application of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations. Infrared Phys. Technol. 2002;43:211–218. doi: 10.1016/S1350-4495(02)00141-X. DOI
Tanner C.B. Plant temperatures. Agron. J. 1963;55:201–211. doi: 10.2134/agronj1963.00021962005500020043x. DOI
Kestin J., Sengers J.V., Parsi B.K., Levelt Sengers J.M.H. Thermophysical properties of fluid H2O. J. Phys. Chem. Ref. Data. 1984;13 doi: 10.1063/1.555707. DOI
Zábranský M., Kolská Z., Růžička N.J., Domalski E.S. Heat capacity of liquids: Critical review and recommended values. Supplement II. J. Phys. Chem. Ref. Data. 2010;39:033108. doi: 10.1063/1.3182831. DOI
Kana R., Vass I. Thermoimaging as a tool for studying light-induced heating of leaves. Correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ. Exp. Bot. 2008;64:90–96. doi: 10.1016/j.envexpbot.2008.02.006. DOI
Jones H.G., Stoll M., Santos T., de Sousa C., Chaves M.M., Grant O.M. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. J. Exp. Bot. 2002;54:879–889. doi: 10.1093/jxb/erg116. PubMed DOI
Leinonen I., Grant O.M., Tagliavia C.P.P., Chaves M.M., Jones H.G. Estimating stomata conductance with thermal imaginery. Plant Cell Environ. 2006;29:1508–1518. doi: 10.1111/j.1365-3040.2006.01528.x. PubMed DOI
Cohen Y., Alchanatis V., Meron M., Saranga Y., Tsipris J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005;56:1843–1852. doi: 10.1093/jxb/eri174. PubMed DOI
Jones H.G. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv. Bot. Res. 2004;41:107–163. doi: 10.1016/S0065-2296(04)41003-9. DOI
Raza S.A., Prince G., Clarkson J.P., Rajpoot N.M. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE. 2015;10:e0123262. doi: 10.1371/journal.pone.0123262. PubMed DOI PMC
Zhu W., Chen H., Ciechanowska I., Spaner D. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine. 2018;51:424–430. doi: 10.1016/j.ifacol.2018.08.184. DOI
Nilssona H.E. Hand-held radiometry and IR- thermography of plant diseases in field plot experiments. Int. J. Remote Sens. 1991;12:545–557. doi: 10.1080/01431169108929671. DOI
Wisniewski M., Neuner G., Gusta L. The use of high-resolution infrared thermography (HRIT) for the study of ice nucleation and ice propagation in plants. J. Vis. Exp. 2015;99:1–11. doi: 10.3791/52703. PubMed DOI PMC
He J., Zhang R.X., Peng K., Tagliavia C., Li S., Xue S., Liu A., Hu H., Zhang J., Hubbard K.E., et al. The BIG protein distinguishes the process of CO2—Induced stomatal closure from the inhibition of stomatal opening by CO2. New Phytol. 2018;218:232–241. doi: 10.1111/nph.14957. PubMed DOI PMC
Merlot S., Mustilli A.C., Genty B., North H., Lefebvre V., Sotta B., Vavasseur A., Giraudat J. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002;30:601–609. doi: 10.1046/j.1365-313X.2002.01322.x. PubMed DOI
Lamprecht I. Flower ovens: Thermal investigations on heat producing plants. Thermochim. Acta. 2002;391:107–118. doi: 10.1016/S0040-6031(02)00168-5. DOI
Hairmansis A., Berger B., Tester M., Roy S.J. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice. 2014;7:1–10. doi: 10.1186/s12284-014-0016-3. PubMed DOI PMC
Munns R., James R.A., Sirault X.R.R., Furbank R.T., Jones H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 2010;61:3499–3507. doi: 10.1093/jxb/erq199. PubMed DOI
James R.A., Sirault X.R.R. Infrared thermography in plant phenotyping for salinity tolerance. Methods Mol. Biol. 2012;913:173–189. doi: 10.1007/978-1-61779-986-0_11. PubMed DOI
Urrestarazu M. Infrared thermography used to diagnose the effects of salinity in a soilless culture. Quant. InfraRed Therm. J. 2013;10:1–8. doi: 10.1080/17686733.2013.763471. DOI
Sirault X.R.R., James R.A., Furbank R.T. A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct. Plant Biol. 2009;36:970–997. doi: 10.1071/FP09182. PubMed DOI
Furbank R.T., Tester M. Phenomics- technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635–644. doi: 10.1016/j.tplants.2011.09.005. PubMed DOI
Isayenkov S.V. Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 2012;46:302–318. doi: 10.3103/S0095452712050040. DOI
Ashraf M., Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.) Environ. Exp. Bot. 2008;63:266–273. doi: 10.1016/j.envexpbot.2007.11.008. DOI
Munns R., Tester M. Mechanism of salinity tolerance. Ann. Rev. Plant Physiol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI
Brugnoli E., Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3Non-Halophytes. Plant Physiol. 1991;95:628–635. doi: 10.1104/pp.95.2.628. PubMed DOI PMC
Sharma N., Gupta N.K., Gupta S., Hasegawa H. Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthetica. 2005;43:609–613. doi: 10.1007/s11099-005-0095-x. DOI
Suárez N. Effects of short-and long-term salinity on leaf water relations, gas exchange, and growth in Ipomoea pes-caprae. Flora. 2011;206:267–275. doi: 10.1016/j.flora.2010.05.006. DOI
Chen T.W., Stutzel H., Kahlen K. High light aggravates functional limitations of cucumber canopy photosynthesis under salinity. Ann. Bot. 2018;121:797–807. doi: 10.1093/aob/mcx100. PubMed DOI PMC
Juneau P., Barnett A., Meleder V., Dupuy C., Lavaud J. Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos. J. Exp. Mar. Biol. Ecol. 2015;463:95–104. doi: 10.1016/j.jembe.2014.11.003. DOI
Lu C.M., Zhang J.H. Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. J. Plant Physiol. 1999;155:740–745. doi: 10.1016/S0176-1617(99)80091-1. DOI
Murata N., Takahshi S., Nishiyama Y., Allakhverdiev S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 2007;1767:414–421. doi: 10.1016/j.bbabio.2006.11.019. PubMed DOI
Roach T., Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 2014;15:351–362. doi: 10.2174/1389203715666140327105143. PubMed DOI PMC
Szymańska R., Ślesak I., Orzechowska A., Kruk J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 2017;139:165–177. doi: 10.1016/j.envexpbot.2017.05.002. DOI
Allakhverdiev S.I., Nishiyama Y., Miyairi S., Yamamoto H., Inagaki N., Kanesaki Y., Murata N. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol. 2002;130:1443–1453. doi: 10.1104/pp.011114. PubMed DOI PMC
Kummerlen B., Dauwe S., Schmundt D., Schurr U. Handbook of Computer Vision and Applications. Volume 3. Academic Press; London, UK: 1999. Thermography to measure water relations of plant leaves; pp. 763–781.
Mahajan S., Tuteja N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005;444:139–158. doi: 10.1016/j.abb.2005.10.018. PubMed DOI
Arif Y., Singh P., Siddiqui H., Bajguz A., Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020;156:64–77. doi: 10.1016/j.plaphy.2020.08.042. PubMed DOI
Yepes-Molina L., Bárzana G., Carvajal M. Controversial regulation of gene expression and protein transduction of aquaporins under drought and salinity stress. Plants. 2020;9:1662. doi: 10.3390/plants9121662. PubMed DOI PMC
Karpinska B., Wingsle G., Karpinski S. Antagonistic effects of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. IUBMB Life. 2000;50:21–26. doi: 10.1080/15216540050176548. PubMed DOI
Kostaki K.I., Coupel-Ledru A., Bonnell V.C., Gustavsson M., Sun P., McLaughlin F.J., Fraser D.P., McLachlan D.H., Hetherington A.M., Dodd A.N., et al. Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 2020;182:1404–1419. doi: 10.1104/pp.19.01528. PubMed DOI PMC
Yu Z., Duan X., Luo L., Dai S., Ding Z., Xia G. How plant hormones mediate salt stress responses. Trends Plant. Sci. 2020;25:1117–1130. doi: 10.1016/j.tplants.2020.06.008. PubMed DOI
James R.A., von Caemmerer S., Condon A.G., Zwart A.B., Munns R. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct. Plant Biol. 2008;35:111–123. doi: 10.1071/FP07234. PubMed DOI
Hernandez J.A., Campillo A., Jimenez A., Alarcon J.J., Sevilla F. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol. 1999;141:241–251. doi: 10.1046/j.1469-8137.1999.00341.x. PubMed DOI
Li Z.H., Liu Z.J. Effect of NaCl on growth, morphology, and camptothecin accumulation in Camptotheca acuminata seedlings. Can. J. Plant Sci. 2003;83:931–938. doi: 10.4141/P03-023. DOI
Abdol-Qados A.M.S. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) J. Saudi Soc. Agric. Sci. 2011;10:7–15. doi: 10.1016/j.jssas.2010.06.002. DOI
Redondo-Gómez S., Mateos-Naranjo E., Davy A.J., Fernández-Muñoz F., Castellanos E.M., Luque T., Figueroa M.E. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann. Bot. 2007;100:555–563. doi: 10.1093/aob/mcm119. PubMed DOI PMC
Pepelkova H., Yocum C.F. Current status of the role of Cl− ion in the oxygen-evolving complex. Photosynth. Res. 2007;93:111–121. doi: 10.1007/s11120-006-9121-5. PubMed DOI
Calabrese E.J., Mattson M.P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 2017;3 doi: 10.1038/s41514-017-0013-z. PubMed DOI PMC
Genty B., Briantais J.M., Baker N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI
Öquist G., Chow W.S., Anderson J.M. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta. 1992;186:450–460. doi: 10.1007/BF00195327. PubMed DOI
Pliego-Cortésa H., Bedouxb G., Boulhob R., Taupinb L., Freile-Pelegrína Y., Bourgougnonb N., Robledoa D. Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an Integrated Multi-Trophic Aquaculture system. Algal Res. 2019;41:1–11. doi: 10.1016/j.algal.2019.101542. DOI
Gao Y., Zheng W., Zhang C., Zhang L., Xu K. High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Sci. Hortic. 2019;248:132–137. doi: 10.1016/j.scienta.2019.01.007. DOI
Gerganova M.T., Faik A.K., Velitchkova M.Y. Acquired tolerance of the photosynthetic apparatus to photoinhibition as a result of growing Solanum lycopersicum at moderately higher temperature and light intensity. Funct. Plant. Biol. 2019 doi: 10.1071/FP18264. PubMed DOI
Krause G.H., Somersalo S., Zumbusch E., Weyers B., Laasch H. On the mechanism of photoinhibition in chloroplasts. Relationship between changes in fluorescence and activity of Photosystem II. J. Plant Physiol. 1990;136:472–479. doi: 10.1016/S0176-1617(11)80038-6. DOI
Critchley C. D1 protein turnover: Response to photodamage or regulatory mechanism? In: Baker N.R. Jr., Bowyer J.R., editors. Photoinhibition of Photosynthesis. Bios Scientific; Oxford, UK: 1994. pp. 195–203.
Gerard J., Kluitenberg J., Biggar W. Canopy temperature as a measure of salinity stress on sorghum. Irrig. Sci. 1992;13:115–121. doi: 10.1007/BF00191053. DOI
Vialet-Chabrand S., Lawson T. Dynamic leaf energy balance: Deriving stomatal conductance from thermal imaging in a dynamic environment. J. Exp. Bot. 2019;70:2839–2855. doi: 10.1093/jxb/erz068. PubMed DOI PMC
Orzechowska A., Trtílek M., Niewiadomska E. A thermographic study of plant response to excessive light. Acta Phys. Pol. A. 2021;139:257–260. doi: 10.12693/APhysPolA.139.257. DOI
Orzechowska A., Trtílek M., Tokarz K., Rozpądek P. A study of light-induced stomatal response in Arabidopsis using thermal imaging. Biochem. Biophys. Res. Commun. 2020;533:1129–1134. doi: 10.1016/j.bbrc.2020.09.020. PubMed DOI
Bajons P., Klinger G., Schlosser V. Determination of stomatal conductance by means of infrared termography. Infrared Phys. Technol. 2005;46:429–439. doi: 10.1016/j.infrared.2004.09.001. DOI
Weyers J., Lawson T. Heterogenity in stomatal characteristics. Adv. Bot. Res. 1997;26:317–352. doi: 10.1016/S0065-2296(08)60124-X. DOI
Lawson T., Weyers J. Spatial and temporal variation in gas exchange over the lower surface of Phaselous vulgaris L. primary leaves. J. Exp. Bot. 1999;50:1381–1391. doi: 10.1093/jxb/50.337.1381. DOI
Buckley T.N., Mott K.A. Stomatal responses to non—Local changes in PFD: Evidence for long—Distance hydraulic interactions. Plant Cell Environ. 2001;23:301–309. doi: 10.1046/j.1365-3040.2000.00552.x. DOI
Jung H.-I., Lee B.-R., Chae M.-J., Lee E.-J., Lee T.-G., Jung G.-B., Kim M.-S., Lee J. Ascorbate-Mediated Modulation of Cadmium Stress Responses: Reactive Oxygen Species and Redox Status in Brassica napus. Front. Plant Sci. 2020;11:1823. doi: 10.3389/fpls.2020.586547. PubMed DOI PMC
Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzym. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI
Cruz A.J., Savage L.J., Zegarac R., Hall C.C., Satoh-Cruz M., Davis G.A., Kovac W.K., Chen J., Kramer D.M. Dynamic environmental photosynthetic imaging reveals emergent phenotypes. Cell Syst. 2016;2:365–377. doi: 10.1016/j.cels.2016.06.001. PubMed DOI
Fluorescence Analysis of Biocide Efficiency in Antifouling Coatings against Cyanobacteria