Fluorescence Analysis of Biocide Efficiency in Antifouling Coatings against Cyanobacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16.16.220.842
AGH University of Science and Technology
PubMed
36902403
PubMed Central
PMC10003456
DOI
10.3390/ijms24054972
PII: ijms24054972
Knihovny.cz E-zdroje
- Klíčová slova
- Cyanothece, antifouling coatings, chlorophyll fluorescence, cyanobacteria, photosystem II (PSII) efficiency, toxicity,
- MeSH
- bioznečištění * prevence a kontrola MeSH
- dezinficiencia * analýza MeSH
- fluorescence MeSH
- fotosystém II - proteinový komplex MeSH
- lodě MeSH
- nátěrové hmoty MeSH
- sinice * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dezinficiencia * MeSH
- fotosystém II - proteinový komplex MeSH
This study focused on the antifouling effect of copper oxide (Cu2O)- and zineb-based coatings against Cyanothece sp. ATCC 51142 by analysing photosynthetic activity using chlorophyll fluorescence. The photoautotrophically grown cyanobacterium was exposed to toxic coatings over a short-term period of 32 h. The study showed that Cyanothece cultures are particularly sensitive to biocides (i) released from antifouling paints and (ii) exhibited by contact with the coated surfaces. Changes in the maximum quantum yield of photosystem II (FV/FM) were observed within the first 12 h of exposure to the coatings. Partial recovery of FV/FM in Cyanothece was revealed 24 h post exposure to a copper- and zineb-free coating. In this research, we proposed an analysis of the evaluation of fluorescence data to study the initial response of cyanobacterial cells to copper- and non-copper-based antifouling coatings formulated with zineb. We evaluated the dynamics of coating toxicity by determining the characteristic time constants of changes in the FV/FM. Within the most toxic paints studied, those formulated with the highest concentration of Cu2O and zineb, the estimated time constants were 3.9 times lower compared to the copper- and zineb-free paint. The use of zineb in copper-based antifouling coatings enhanced the toxic effect of paints and contributed to a faster decline in photosystem II activity in Cyanothece cells. The analysis we proposed, along with the fluorescence screening results, may be useful in evaluating the initial antifouling dynamic action against photosynthetic aquacultures.
Zobrazit více v PubMed
Bixler G.D., Bhushan B. Biofouling: Lessons from nature. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2012;370:2381–2417. doi: 10.1098/rsta.2011.0502. PubMed DOI
Chambers L.D., Stokes K.R., Walsh F.C., Wood R.J.K. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 2006;201:3642–3652. doi: 10.1016/j.surfcoat.2006.08.129. DOI
Erol E., Cansoy C.E., Aybar O.Ö. Assessment of the impact of fouling on vessel energy efficiency by analyzing ship automation data. Appl. Ocean Res. 2020;105:102418. doi: 10.1016/j.apor.2020.102418. DOI
Farkas A., Degiuli N., Martić I., Dejhalla R. Impact of Hard Fouling on the Ship Performance of Different Ship Forms. J. Mar. Sci. Eng. 2020;8:748. doi: 10.3390/jmse8100748. DOI
Jin H.C., Tian L.M., Bing W., Zhao J., Ren L.Q. Bioinspired marine antifouling coatings: Status, prospects, and future. Prog. Mater. Sci. 2022;124:100889. doi: 10.1016/j.pmatsci.2021.100889. DOI
Oliveira D.R., Granhag L. Ship hull in-water cleaning and its effects on fouling-control coatings. Biofouling. 2020;36:332–350. doi: 10.1080/08927014.2020.1762079. PubMed DOI
Tian L., Yin Y., Jin H., Bing W., Jin E., Zhao J., Ren L. Novel marine antifouling coatings inspired by corals. Mater. Today Chem. 2020;17:100294. doi: 10.1016/j.mtchem.2020.100294. DOI
Schultz M.P., Bendick J.A., Holm E.R., Hertel W.M. Economic impact of biofouling on a naval surface ship. Biofouling. 2011;27:87–98. doi: 10.1080/08927014.2010.542809. PubMed DOI
Dobretsov S., Coutinho R., Rittschof D., Salta M., Ragazzola F., Hellio C. The oceans are changing: Impact of ocean warming and acidification on biofouling communities. Biofouling. 2019;35:585–595. doi: 10.1080/08927014.2019.1624727. PubMed DOI
Chan F.T., Ogilvie D., Sylvester F., Baliey S.A. Ship biofouling as a vector for non-indigenous aquatic species to canadian arctic coastal ecosystems: A survey and modeling-based assessment. Front. Mar. Sci. 2022;9:808055. doi: 10.3389/fmars.2022.808055. DOI
Jin H.C., Wang J.F., Tian L.M., Gao M.Y., Zhao J., Ren L.Q. Recent advances in emerging integrated antifouling and anticorrosion coatings. Mater. Des. 2022;213:110307. doi: 10.1016/j.matdes.2021.110307. DOI
Panchal C.B. Review of fouling mechanisms; Proceedings of the International Conference on Mitigation of Heat Exchanger Fouling and Its Economic and Environmental Implications; Banff, AB, Canada. 18–23 July 1999; pp. 8–15.
Lindgren J.F., Ytreberg E., Holmqvist A., Dahlström M., Dahl P., Berglin M., Wrange A.-L., Dahlström M. Copper release rate needed to inhibit fouling on the west coast of Sweden and control of copper release using zinc oxide. Biofouling. 2018;34:453–463. doi: 10.1080/08927014.2018.1463523. PubMed DOI
Tsang T., Davis C.I., Brady D.C. Copper biology. Curr. Biol. 2021;31:R421–R427. doi: 10.1016/j.cub.2021.03.054. PubMed DOI
Jin M.F., You M.X., Lan Q.Q., Cai L.Y., Lin M.Z. Effect of copper on the photosynthesis and growth of Eichhornia crassipes. Plant Biol. 2021;23:777–784. doi: 10.1111/plb.13281. PubMed DOI
Kiaune L., Singhasemanon N. Pesticidal copper (I) oxide: Environmental fate and aquatic toxicity. Rev Env. Contam. Toxicol. 2011;213:1–26. doi: 10.1007/978-1-4419-9860-6_1. PubMed DOI
Smolyakov B.S., Zhigula M.V., Ryzhikh A.P., Sinitsyna E.V., Ermolaeva N.I., Fedotova A.A. Copper (II) Speciation in a Freshwater Ecosystem. Water Resour. 2004;31:55–63. doi: 10.1023/B:WARE.0000013573.08909.c3. DOI
Burkhead J.L., Reynolds K.A.G., Abdel-Ghany S.E., Cohu C.M., Pilon M. Copper homeostasis. New Phytol. 2009;182:799–816. doi: 10.1111/j.1469-8137.2009.02846.x. PubMed DOI
Chen G., Li J., Han H., Du R., Wang X. Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. Int. J. Mol. Sci. 2022;23:12950. doi: 10.3390/ijms232112950. PubMed DOI PMC
Huertas M.J., López-Maury L., Giner-Lamia J., Sánchez-Riego A.M., Florencio F.J. Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms. Life. 2014;4:865–886. doi: 10.3390/life4040865. PubMed DOI PMC
Hadjoudja S., Vignoles C., Deluchat V., Lenain J.F., Le Jeune A.H., Baudu M. Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquat. Toxicol. 2009;94:255–264. doi: 10.1016/j.aquatox.2009.07.007. PubMed DOI
Mota R., Pereira S.B., Meazzini M., Fernandes R., Santos A., Evans C.A., De Philippis R., Wright P.C., Tamagnini P. Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J. Proteom. 2015;120:75–94. doi: 10.1016/j.jprot.2015.03.004. PubMed DOI
Cavalletti E., Romano G., Palma Esposito F., Barra L., Chiaiese P., Balzano S., Sardo A. Copper Effect on Microalgae: Toxicity and Bioremediation Strategies. Toxics. 2022;10:527. doi: 10.3390/toxics10090527. PubMed DOI PMC
Mir A.R., Pichtel J., Hayat S. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals. 2021;34:737–759. doi: 10.1007/s10534-021-00306-z. PubMed DOI
EU . Regulation (EU) n°528/2012 Concerning the Making Available on the Market and Use of Biocidal Products. European Union; Dublin, Ireland: 2012. Evaluation of active substances, Zineb Product-Type 21 (Anti-fouling products) p. 112.
PubChem Compound Summary for CID 5284484, Zineb. National Library of Medicine (US), National Center for Biotechnology Information; Bethesda, MD, USA: 2004.
Gaysina L.A., Saraf A., Singh P. Chapter 1—Cyanobacteria in Diverse Habitats. In: Mishra A.K., Tiwari D.N., Rai A.N., editors. Cyanobacteria. Academic Press; Cambridge, MA, USA: 2019. pp. 1–28. DOI
Burnat M., Diestra E., Esteve I., Solé A. In Situ Determination of the Effects of Lead and Copper on Cyanobacterial Populations in Microcosms. PLoS ONE. 2009;4:e6204. doi: 10.1371/journal.pone.0006204. PubMed DOI PMC
Le Jeune A.H., Charpin M., Sargos D., Lenain J.F., Deluchat V., Ngayila N., Baudu M., Amblard C. Planktonic microbial community responses to added copper. Aquat. Toxicol. 2007;83:223–237. doi: 10.1016/j.aquatox.2007.04.007. PubMed DOI
Micheletti E., Colica G., Viti C., Tamagnini P., De Philippis R. Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J. Appl. Microbiol. 2008;105:88–94. doi: 10.1111/j.1365-2672.2008.03728.x. PubMed DOI
Orzechowska A., Trtílek M., Tokarz K., Rozpądek P. A study of light-induced stomatal response in Arabidopsis using thermal imaging. Biochem. Biophys. Res. Commun. 2020;533:1129–1134. doi: 10.1016/j.bbrc.2020.09.020. PubMed DOI
Orzechowska A., Trtílek M., Tokarz K.M., Szymańska R., Niewiadomska E., Rozpądek P., Wątor K. Thermal Analysis of Stomatal Response under Salinity and High Light. Int. J. Mol. Sci. 2021;22:4663. doi: 10.3390/ijms22094663. PubMed DOI PMC
Maxwell K., Johnson G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI
Lichtenthaler H.K., Babani F. Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiol. Biochem. 2000;38:889–895. doi: 10.1016/S0981-9428(00)01199-2. DOI
Miszalski Z., Skoczowski A., Silina E., Dymova O., Golovko T., Kornas A., Strzalka K. Photosynthetic activity of vascular bundles in Plantago media leaves. J. Plant Physiol. 2016;204:36–43. doi: 10.1016/j.jplph.2016.06.012. PubMed DOI
Sukenik A., Beardall J., Kromkamp J.C., Kopecky J., Masojidek J., van Bergeijk S., Gabai S., Shaham E., Yamshon A. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat. Microb. Ecol. 2009;56:297–308. doi: 10.3354/ame01309. DOI
Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI
Kong L. Copper Requirement and Acquisition by Marine Microalgae. Microorganisms. 2022;10:1853. doi: 10.3390/microorganisms10091853. PubMed DOI PMC
Lopez J.S., Lee L., Mackey K.R.M. The toxicity of copper to Crocosphaera watsonii and other marine phytoplankton: A systematic review. Front. Mar. Sci. 2019;5:511. doi: 10.3389/fmars.2018.00511. DOI
Bhargava P., Mishra Y., Srivastava A.K., Narayan O.P., Rai L.C. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: A homology based proteomic assessment of its survival strategy. Photosynth. Res. 2008;96:61–74. doi: 10.1007/s11120-007-9285-7. PubMed DOI
Dudkowiak A., Olejarz B., Łukasiewicz J., Banaszek J., Sikora J., Wiktorowicz K. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements. Int. J. Thermophys. 2011;32:762–773. doi: 10.1007/s10765-010-0852-3. DOI
Löschau M., Krätke R. Efficacy and toxicity of self-polishing biocide-free antifouling paints. Environ. Pollut. 2005;138:260–267. doi: 10.1016/j.envpol.2005.04.015. PubMed DOI
Ytreberg E., Karlsson J., Eklund B. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci. Total Environ. 2010;408:2459–2466. doi: 10.1016/j.scitotenv.2010.02.036. PubMed DOI
Latifi A., Ruiz M., Zhang C.-C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 2009;33:258–278. doi: 10.1111/j.1574-6976.2008.00134.x. PubMed DOI
Jellali R., Kromkamp J.C., Campistron I., Laguerre A., Lefebvre S., Perkins R.G., Pilard J.-F., Mouget J.-L. Antifouling Action of Polyisoprene-Based Coatings by Inhibition of Photosynthesis in Microalgae. Environ. Sci. Technol. 2013;47:6573–6581. doi: 10.1021/es400161t. PubMed DOI
Lee H., Depuydt S., Choi S., Han T., Park J. Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes. Ecotoxicology. 2020;29:559–570. doi: 10.1007/s10646-020-02207-2. PubMed DOI
Papadatou M., Knight M., Salta M. High-throughput method development for in-situ quantification of aquatic phototrophic biofilms. Biofouling. 2022;38:521–535. doi: 10.1080/08927014.2022.2094259. PubMed DOI
Dobretsov S., Rittschof D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int. J. Mol. Sci. 2020;21:731. doi: 10.3390/ijms21030731. PubMed DOI PMC
Guardiola F.A., Cuesta A., Meseguer J., Esteban M.A. Risks of Using Antifouling Biocides in Aquaculture. Int. J. Mol. Sci. 2012;13:1541–1560. doi: 10.3390/ijms13021541. PubMed DOI PMC
Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004;50:75–104. doi: 10.1016/j.porgcoat.2003.06.001. DOI
Chau N.D., Wątor K., Rusiniak P., Gorczyca Z., Van Hao D. Chemical composition, radioactive and stable isotopes in several selected thermal waters in North Vietnam. Ecol. Indic. 2022;138:108856. doi: 10.1016/j.ecolind.2022.108856. DOI
Wątor K., Dobrzyński D. Towards a better practice in water sampling: Case studies on used in practice geothermal waters. Chemosphere. 2022;303:134913. doi: 10.1016/j.chemosphere.2022.134913. PubMed DOI