New avenues for mechanochemistry in zeolite science
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print
Document type Journal Article
PubMed
34152333
PubMed Central
PMC8258784
DOI
10.1039/d1dt01440d
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Zeolites are a class of microporous materials with tremendous value for large scale industrial applications such as catalysis, ion exchange, or gas separation. In addition to naturally ocurring variants, zeolites are made synthetically using hydrothermal synthesis, requiring temperatures beyond 100 °C and long reaction times up to weeks. Furthermore, specific applications may require more sophisticated synthesis conditions, expensive reagents, or post-synthetic modifications. Some of these issues can be tackled by using the reemerged technique of mechanochemistry. In 2014, Majano et al. reviewed the space and outlined several possibilities for the usage of mechanical forces in zeolite chemistry. Since then the field has seen many more publications employing mechanochemical methodology to further and improve the synthesis and properties of zeolite materials. The usage ranges from the activation of raw materials, rendering the synthesis of the widely used catalysts much more economical in terms of duration, atom efficiency, and production of waste, to post-synthetic modification of the materials leading to improved properties for target aplications. We present a short review of the advances that have been reported recently, highlight promising work and important studies, and give a perspective of potential future endeavours.
See more in PubMed
Boldyrev V. V. Tkáčová K. J. Mater. Synth. Process. 2000;8:121–132. doi: 10.1023/A:1011347706721. DOI
Delogu F. Deidda C. Mulas G. Schiffini L. Cocco G. J. Mater. Sci. 2004;39:5121–5124. doi: 10.1023/B:JMSC.0000039194.07422.be. DOI
Nasser A. Mingelgrin U. Appl. Clay Sci. 2012;67–68:141–150. doi: 10.1016/j.clay.2011.11.018. DOI
James S. L. Adams C. J. Bolm C. Braga D. Collier P. Friščić T. Grepioni F. Harris K. D. M. Hyett G. Jones W. Krebs A. Mack J. Maini L. Orpen A. G. Parkin I. P. Shearouse W. C. Steed J. W. Waddell D. C. Chem. Soc. Rev. 2012;41:413–447. doi: 10.1039/C1CS15171A. PubMed DOI
Boldyreva E. Chem. Soc. Rev. 2013;42:7719–7738. doi: 10.1039/C3CS60052A. PubMed DOI
Bowmaker G. A. Chem. Commun. 2013;49:334–348. doi: 10.1039/C2CC35694E. PubMed DOI
Baláž P. Achimovičová M. Baláž M. Billik P. Cherkezova-Zheleva Z. Criado J. M. Delogu F. Dutková E. Gaffet E. Gotor F. J. Kumar R. Mitov I. Rojac T. Senna M. Streletskii A. Wieczorek-Ciurowa K. Chem. Soc. Rev. 2013;42:7571. doi: 10.1039/C3CS35468G. PubMed DOI
Friščić T. James S. L. Boldyreva E. V. Bolm C. Jones W. Mack J. Steed J. W. Suslick K. S. Chem. Commun. 2015;51:6248–6256. doi: 10.1039/C5CC90113H. PubMed DOI
Do J.-L. Friščić T. ACS Cent. Sci. 2017;3:13–19. doi: 10.1021/acscentsci.6b00277. PubMed DOI PMC
Friščić T. Mottillo C. Titi H. M. Angew. Chem., Int. Ed. 2020;59:1018–1029. doi: 10.1002/anie.201906755. PubMed DOI
Mateti S. Mathesh M. Liu Z. Tao T. Ramireddy T. Glushenkov A. M. Yang W. Chen Y. I. Chem. Commun. 2021;57:1080–1092. doi: 10.1039/D0CC06581A. PubMed DOI
Tan D. García F. Chem. Soc. Rev. 2019;48:2274–2292. doi: 10.1039/C7CS00813A. PubMed DOI
Tan D. Friščić T. Eur. J. Org. Chem. 2018;2018:18–33. doi: 10.1002/ejoc.201700961. DOI
Amrute A. P. De Bellis J. Felderhoff M. Schüth F. Chem. – Eur. J. 2021;27:6819–6847. doi: 10.1002/chem.202004583. PubMed DOI PMC
Friščić T. Friić T. J. Mater. Chem. 2010;20:7599. doi: 10.1039/C0JM00872A. DOI
Zhang Q. Saito F. Adv. Powder Technol. 2012;23:523–531. doi: 10.1016/j.apt.2012.05.002. DOI
Ralphs K. Hardacre C. James S. L. Chem. Soc. Rev. 2013;42:7701–7718. doi: 10.1039/C3CS60066A. PubMed DOI
Šepelák V. Düvel A. Wilkening M. Becker K.-D. Heitjans P. Chem. Soc. Rev. 2013;42:7507. doi: 10.1039/C2CS35462D. PubMed DOI
Friščić T. Chem. Soc. Rev. 2012;41:3493. doi: 10.1039/C2CS15332G. PubMed DOI
Muñoz-Batista M. J. Rodriguez-Padron D. Puente-Santiago A. R. Luque R. ACS Sustainable Chem. Eng. 2018;6:9530–9544. doi: 10.1021/acssuschemeng.8b01716. DOI
Peh S. B. Wang Y. Zhao D. ACS Sustainable Chem. Eng. 2019;7:3647–3670. doi: 10.1021/acssuschemeng.8b05463. DOI
Szczęśniak B. Borysiuk S. Choma J. Jaroniec M. Mater. Horiz. 2020;7:1457–1473. doi: 10.1039/D0MH00081G. DOI
Rubio-Martinez M. Avci-Camur C. Thornton A. W. Imaz I. Maspoch D. Hill M. R. Chem. Soc. Rev. 2017;46:3453–3480. doi: 10.1039/C7CS00109F. PubMed DOI
Li P. Cheng F.-F. Xiong W.-W. Zhang Q. Inorg. Chem. Front. 2018;5:2693–2708. doi: 10.1039/C8QI00543E. DOI
Tanaka S., in Metal-Organic Frameworks for Biomedical Applications, Elsevier, 2020, pp. 197–222
Stolar T. Užarević K. CrystEngComm. 2020;22:4511–4525. doi: 10.1039/D0CE00091D. DOI
Chen B. Yang Z. Zhu Y. Xia Y. J. Mater. Chem. A. 2014;2:16811–16831. doi: 10.1039/C4TA02984D. DOI
Zhang P. Dai S. J. Mater. Chem. A. 2017;5:16118–16127. doi: 10.1039/C7TA04829G. DOI
Majano G. Borchardt L. Mitchell S. Valtchev V. Pérez-Ramírez J. Microporous Mesoporous Mater. 2014;194:106–114. doi: 10.1016/j.micromeso.2014.04.006. DOI
Weckhuysen B. M. Yu J. Chem. Soc. Rev. 2015;44:7022–7024. doi: 10.1039/C5CS90100F. PubMed DOI
Shamzhy M. Opanasenko M. Concepción P. Martínez A. Chem. Soc. Rev. 2019;48:1095–1149. doi: 10.1039/C8CS00887F. PubMed DOI
Kosinov N. Gascon J. Kapteijn F. Hensen E. J. M. J. Membr. Sci. 2016;499:65–79. doi: 10.1016/j.memsci.2015.10.049. DOI
Cundy C. S. Cox P. A. Chem. Rev. 2003;103:663–702. doi: 10.1021/cr020060i. PubMed DOI
Cundy C. S. Cox P. A. Microporous Mesoporous Mater. 2005;82:1–78. doi: 10.1016/j.micromeso.2005.02.016. DOI
Baerlocher C. and McCusker L. B., Database of Zeolite Structures, http://www.iza-structure.org/databases/, (accessed 30 April 2021)
Gordina N. E. Prokof'ev V. Y. Il'in A. P. Russ. J. Appl. Chem. 2003;76:661–662. doi: 10.1023/A:1025772111644. DOI
Prokofév V. Y. Gordina N. E. Zhidkova A. B. Efremov A. M. J. Mater. Sci. 2012;47:5385–5392. doi: 10.1007/s10853-012-6421-3. DOI
Prokof'ev V. Y. Gordina N. E. Zhidkova A. B. Russ. J. Appl. Chem. 2012;85:1077–1082. doi: 10.1134/S1070427212070142. DOI
Prokof'ev V. Y. Gordina N. E. Russ. J. Appl. Chem. 2013;86:332–338. doi: 10.1134/S1070427213030075. DOI
Gordina N. E. Prokof'ev V. Y. Kochetkov S. P. Russ. J. Gen. Chem. 2018;88:1981–1989. doi: 10.1134/S1070363218090402. DOI
Prokof'ev V. Y. Gordina N. E. Efremov A. M. J. Mater. Sci. 2013;48:6276–6285. doi: 10.1007/s10853-013-7425-3. DOI
Wu Q. Meng X. Gao X. Xiao F.-S. Acc. Chem. Res. 2018;51:1396–1403. doi: 10.1021/acs.accounts.8b00057. PubMed DOI
Mei J. Duan A. Wang X. Materials. 2021;14:788. doi: 10.3390/ma14040788. PubMed DOI PMC
Kornas A. Olszówka J. E. Klein P. Pashkova V. Catalysts. 2021;11:246. doi: 10.3390/catal11020246. DOI
Ren L. Wu Q. Yang C. Zhu L. Li C. Zhang P. Zhang H. Meng X. Xiao F.-S. J. Am. Chem. Soc. 2012;134:15173–15176. doi: 10.1021/ja3044954. PubMed DOI
Jin Y. Chen X. Sun Q. Sheng N. Liu Y. Bian C. Chen F. Meng X. Xiao F.-S. Chem. – Eur. J. 2014;20:17616–17623. doi: 10.1002/chem.201403890. PubMed DOI
Zhao X. Gao X. Zhang X. Hao Z. Microporous Mesoporous Mater. 2017;242:160–165. doi: 10.1016/j.micromeso.2017.01.028. DOI
Jin Y. Sun Q. Qi G. Yang C. Xu J. Chen F. Meng X. Deng F. Xiao F.-S. Angew. Chem., Int. Ed. 2013;52:9172–9175. doi: 10.1002/anie.201302672. PubMed DOI
Du Y. Feng B. Jiang Y. Yuan L. Huang K. Li J. Eur. J. Inorg. Chem. 2018;2018:2599–2606. doi: 10.1002/ejic.201800134. DOI
Zhu L. Zhang J. Wang L. Wu Q. Bian C. Pan S. Meng X. Xiao F. S. J. Mater. Chem. A. 2015;3:14093–14095. doi: 10.1039/C5TA02680F. DOI
Liu X. Chu Y. Wang Q. Wang W. Wang C. Xu J. Deng F. Solid State Nucl. Magn. Reson. 2017;87:1–9. doi: 10.1016/j.ssnmr.2017.05.002. PubMed DOI
Zhao X. Duan W. Zhang X. Ji D. Zhao Y. Li G. React. Kinet., Mech. Catal. 2018;125:1055–1070. doi: 10.1007/s11144-018-1465-2. DOI
Shakeri M. ChemistrySelect. 2019;4:7566–7571. doi: 10.1002/slct.201901460. DOI
Xiao Y. Sheng N. Chu Y. Wang Y. Wu Q. Liu X. Deng F. Meng X. Feng Z. Microporous Mesoporous Mater. 2017;237:201–209. doi: 10.1016/j.micromeso.2016.09.029. DOI
Nada M. H. Gillan E. G. Larsen S. C. Microporous Mesoporous Mater. 2019;276:23–28. doi: 10.1016/j.micromeso.2018.09.009. DOI
Nada M. H. Larsen S. C. Gillan E. G. Solid State Sci. 2019;94:15–22. doi: 10.1016/j.solidstatesciences.2019.05.009. DOI
Nada M. H. Larsen S. C. Gillan E. G. Nanoscale Adv. 2019;1:3918–3928. doi: 10.1039/C9NA00399A. PubMed DOI PMC
Kornas A. Olszówka J. E. Urbanova M. Mlekodaj K. Brabec L. Rathousky J. Dedecek J. Pashkova V. Eur. J. Inorg. Chem. 2020;2020:2791–2797. doi: 10.1002/ejic.202000320. DOI
Soekiman C. N. Miyake K. Hirota Y. Uchida Y. Tanaka S. Miyamoto M. Nishiyama N. Microporous Mesoporous Mater. 2019;273:273–275. doi: 10.1016/j.micromeso.2018.06.044. DOI
Miyagawa S. Miyake K. Hirota Y. Nishiyama N. Miyamoto M. Oumi Y. Tanaka S. Microporous Mesoporous Mater. 2019;278:219–224. doi: 10.1016/j.micromeso.2018.11.037. DOI
Zhao X. Zhao J. Wen J. Li A. Li G. Wang X. Microporous Mesoporous Mater. 2015;213:192–196. doi: 10.1016/j.micromeso.2015.03.031. DOI
Li J. Corma A. Yu J. Chem. Soc. Rev. 2015;44:7112–7127. doi: 10.1039/C5CS00023H. PubMed DOI
Opanasenko M. Shamzhy M. Wang Y. Yan W. Nachtigall P. Čejka J. Angew. Chem., Int. Ed. 2020;59:19380–19389. doi: 10.1002/anie.202005776. PubMed DOI
Yamamoto K. Garcia S. E. B. Saito F. Muramatsu A. Chem. Lett. 2006;35:570–571. doi: 10.1246/cl.2006.570. DOI
García S. E. B. Yamamoto K. Saito F. Muramatsu A. J. Jpn. Pet. Inst. 2007;50:53–60. doi: 10.1627/jpi.50.53. DOI
Yamamoto K. Borjas García S. E. Muramatsu A. Microporous Mesoporous Mater. 2007;101:90–96. doi: 10.1016/j.micromeso.2006.09.034. DOI
Borjas Garcia S. E. Yamamoto K. Muramatsu A. J. Mater. Sci. 2008;43:2367–2371. doi: 10.1007/s10853-007-2104-x. DOI
Iwasaki T. Isaka M. Nakamura H. Yasuda M. Watano S. Microporous Mesoporous Mater. 2012;150:1–6. doi: 10.1016/j.micromeso.2011.09.023. DOI
Zhang J. Qiao S. R. Adv. Mater. Res. 2013;652–654:693–697.
Zhang M. Lin Z. Huang Q. Zhu Y. Hu H. Chen X. Adv. Powder Technol. 2020;31:2025–2034. doi: 10.1016/j.apt.2020.02.037. DOI
Iida T. Takagaki A. Kohara S. Okubo T. Wakihara T. ChemNanoMat. 2015;1:155–158. doi: 10.1002/cnma.201500038. DOI
Kanie K. Sakaguchi M. Muto F. Horie M. Nakaya M. Yokoi T. Muramatsu A. Sci. Technol. Adv. Mater. 2018;19:545–553. doi: 10.1080/14686996.2018.1497404. PubMed DOI PMC
Iida T. Sato M. Liu Z. Numako C. Nakahira A. Okubo T. Wakihara T. Chem. Lett. 2014;43:1346–1348. doi: 10.1246/cl.140340. DOI
Iida T. Sato M. Numako C. Nakahira A. Kohara S. Okubo T. Wakihara T. J. Mater. Chem. A. 2015;3:6215–6222. doi: 10.1039/C4TA06246A. DOI
Yabushita M. Yoshida M. Muto F. Horie M. Kunitake Y. Nishitoba T. Maki S. Kanie K. Yokoi T. Muramatsu A. Mol. Catal. 2019;478:110579. doi: 10.1016/j.mcat.2019.110579. DOI
Hu P. Iyoki K. Yamada H. Yanaba Y. Ohara K. Katada N. Wakihara T. Microporous Mesoporous Mater. 2019;288:109594. doi: 10.1016/j.micromeso.2019.109594. DOI
Yamamoto K. Ikeda T. Ideta C. Yasuda M. Cryst. Growth Des. 2012;12:1354–1361. doi: 10.1021/cg201442u. DOI
Ikeda T. Ideta C. Yamamoto K. Z. Kristallogr. – Cryst. Mater. 2013;228:173–179. doi: 10.1524/zkri.2013.1591. DOI
Yamamoto K. Ikeda T. Ideta C. Microporous Mesoporous Mater. 2013;172:13–19. doi: 10.1016/j.micromeso.2013.01.004. DOI
Yabushita M. Kobayashi H. Osuga R. Nakaya M. Matsubara M. Maki S. Kanie K. Muramatsu A. Ind. Eng. Chem. Res. 2021;60:2079–2088. doi: 10.1021/acs.iecr.0c05386. DOI
Valtchev V. Mintova S. Dimov V. Toneva A. Radev D. Zeolites. 1995;15:193–197. doi: 10.1016/0144-2449(94)00058-Z. DOI
Xu N. Meng D. Tang X. Kong X. Kong L. Zhang Y. Qiu H. Wang M. Zhang Y. Sep. Purif. Technol. 2020;253:117505. doi: 10.1016/j.seppur.2020.117505. DOI
Miyake K. Ono K. Nakai M. Hirota Y. Uchida Y. Tanaka S. Miyamoto M. Nishiyama N. ChemistrySelect. 2017;2:7651–7653. doi: 10.1002/slct.201701593. DOI
Jiang J. Wang X. Zhang Y. Liu D. Gu X. Microporous Mesoporous Mater. 2015;215:98–108. doi: 10.1016/j.micromeso.2015.05.033. DOI
Cheng P. Song M. Zhang H. Xuan Y. Wu C. J. Mater. Sci. 2019;54:4573–4578. doi: 10.1007/s10853-018-3178-3. DOI
Zhang H. Wu C. Song M. Lu T. Wang W. Wang Z. Yan W. Cheng P. Zhao Z. Microporous Mesoporous Mater. 2021;310:110633. doi: 10.1016/j.micromeso.2020.110633. DOI
Feng G. Cheng P. Yan W. Boronat M. Li X. Su J.-H. Wang J. Li Y. Corma A. Xu R. Yu J. Science. 2016;351:1188–1191. doi: 10.1126/science.aaf1559. PubMed DOI
Mintova S. Gilson J. P. Valtchev V. Nanoscale. 2013;5:6693–6703. doi: 10.1039/C3NR01629C. PubMed DOI
Valtchev V. Majano G. Mintova S. Pérez-Ramírez J. Chem. Soc. Rev. 2013;42:263–290. doi: 10.1039/C2CS35196J. PubMed DOI
Yousefi E. Falamaki C. Chem. Eng. J. 2013;221:247–253. doi: 10.1016/j.cej.2013.01.109. DOI
Hammond C. Conrad S. Hermans I. Angew. Chem., Int. Ed. 2012;51:11736–11739. doi: 10.1002/anie.201206193. PubMed DOI
Hammond C. Padovan D. Al-Nayili A. Wells P. P. Gibson E. K. Dimitratos N. ChemCatChem. 2015;7:3322–3331. doi: 10.1002/cctc.201500545. PubMed DOI PMC
Joshi H. Ochoa-Hernández C. Nürenberg E. Kang L. Wang F. R. Weidenthaler C. Schmidt W. Schüth F. Microporous Mesoporous Mater. 2020;309:110566. doi: 10.1016/j.micromeso.2020.110566. DOI
Kosanović C. Bronić J. Subotić B. Šmit I. Stubičar M. Tonejc A. Yamamoto T. Zeolites. 1993;13:261–268. doi: 10.1016/0144-2449(93)90004-M. DOI
Zielinski P. A. Van Neste A. Akolekar D. B. Kaliaguine S. Microporous Mater. 1995;5:123–133. doi: 10.1016/0927-6513(95)00050-J. DOI
Wakihara T. Ihara A. Inagaki S. Tatami J. Sato K. Komeya K. Meguro T. Kubota Y. Nakahira A. Cryst. Growth Des. 2011;11:5153–5158. doi: 10.1021/cg201078r. DOI
Wakihara T. Ichikawa R. Tatami J. Endo A. Yoshida K. Sasaki Y. Komeya K. Meguro T. Cryst. Growth Des. 2011;11:955–958. doi: 10.1021/cg2001656. DOI
Wakihara T. Sato K. Sato K. Tatami J. Kohara S. Komeya K. Meguro T. J. Ceram. Soc. Jpn. 2012;120:341–343. doi: 10.2109/jcersj2.120.341. DOI
Inagaki S. Shinoda S. Hayashi S. Wakihara T. Yamazaki H. Kondo J. N. Kubota Y. Catal. Sci. Technol. 2016;6:2598–2604. doi: 10.1039/C5CY01644D. DOI
Iyoki K. Kikumasa K. Onishi T. Yonezawa Y. Chokkalingam A. Yanaba Y. Matsumoto T. Osuga R. Elangovan S. P. Kondo J. N. Endo A. Okubo T. Wakihara T. J. Am. Chem. Soc. 2020;142:3931–3938. doi: 10.1021/jacs.9b12709. PubMed DOI
Yang M. Tian P. Wang C. Yuan Y. Yang Y. Xu S. He Y. Liu Z. Chem. Commun. 2014;50:1845. doi: 10.1039/C3CC48264B. PubMed DOI
Anand C. Yamaguchi Y. Liu Z. Ibe S. Elangovan S. P. Ishii T. Ishikawa T. Endo A. Okubo T. Wakihara T. Sci. Rep. 2016;6:29210. doi: 10.1038/srep29210. PubMed DOI PMC
Liu Z. Zhu J. Wakihara T. Okubo T. Inorg. Chem. Front. 2019;6:14–31. doi: 10.1039/C8QI00939B. DOI
Liu Z. Nomura N. Nishioka D. Hotta Y. Matsuo T. Oshima K. Yanaba Y. Yoshikawa T. Ohara K. Kohara S. Takewaki T. Okubo T. Wakihara T. Chem. Commun. 2015;51:12567–12570. doi: 10.1039/C5CC04542H. PubMed DOI
Zhu J. Liu Z. Endo A. Yanaba Y. Yoshikawa T. Wakihara T. Okubo T. CrystEngComm. 2017;19:632–640. doi: 10.1039/C6CE02237E. DOI
Chokkalingam A. Iyoki K. Hoshikawa N. Onozuka H. Chaikittisilp W. Tsutsuminai S. Takewaki T. Wakihara T. Okubo T. React. Chem. Eng. 2020;5:2260–2266. doi: 10.1039/D0RE00309C. DOI
Yoshioka T. Liu Z. Iyoki K. Chokkalingam A. Yonezawa Y. Hotta Y. Ohnishi R. Matsuo T. Yanaba Y. Ohara K. Takewaki T. Sano T. Okubo T. Wakihara T. React. Chem. Eng. 2021;6:74–81. doi: 10.1039/D0RE00219D. DOI
Peng C. Liu Z. Horimoto A. Anand C. Yamada H. Ohara K. Sukenaga S. Ando M. Shibata H. Takewaki T. Mukti R. R. Okubo T. Wakihara T. Microporous Mesoporous Mater. 2018;255:192–199. doi: 10.1016/j.micromeso.2017.07.042. DOI
Kurniawan T. Muraza O. Hakeem A. S. Al-Amer A. M. Cryst. Growth Des. 2017;17:3313–3320. doi: 10.1021/acs.cgd.7b00295. DOI
Kosanović C. Bronić J. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Zeolites. 1995;15:247–252. doi: 10.1016/0144-2449(94)00022-K. DOI
Kosanović C. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Zeolites. 1995;15:51–57. doi: 10.1016/0144-2449(94)00018-N. DOI
Kosanović C. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Zeolites. 1995;15:632–636. doi: 10.1016/0144-2449(95)00036-6. DOI
Saepurahman R. H. Mater. Chem. Phys. 2018;220:322–330. doi: 10.1016/j.matchemphys.2018.08.080. DOI
Nguyen V. D. Bui Q. M. Kynicky J. Vsiansky D. Cryst. Res. Technol. 2020;55:1900180. doi: 10.1002/crat.201900180. DOI
Sydorchuk V. Vasylechko V. Khyzhun O. Gryshchouk G. Khalameida S. Vasylechko L. Appl. Catal., A. 2021;610:117930. doi: 10.1016/j.apcata.2020.117930. DOI
Prajitno M. Y. Harbottle D. Hondow N. Zhang H. Hunter T. N. J. Environ. Chem. Eng. 2020;8:102991. doi: 10.1016/j.jece.2019.102991. DOI
Panda D., Singh S. K. and Anil Kumar E., Springer Proceedings in Energy, 2020, vol. 2, pp. 541–549
Anis S. F. Lalia B. S. Hashaikeh R. Hilal N. Sep. Purif. Technol. 2020;242:116824. doi: 10.1016/j.seppur.2020.116824. DOI
Yu Q. Li J. Wei C. Zeng S. Xu S. Liu Z. Chin. J. Catal. 2020;41:1268–1278. doi: 10.1016/S1872-2067(20)63567-7. DOI
Inagaki S. Sato K. Hayashi S. Tatami J. Kubota Y. Wakihara T. ACS Appl. Mater. Interfaces. 2015;7:4488–4493. doi: 10.1021/am507982n. PubMed DOI
Kadja G. T. M. Suprianti T. R. Ilmi M. M. Khalil M. Mukti R. R. Subagjo Microporous Mesoporous Mater. 2020;308:110550. doi: 10.1016/j.micromeso.2020.110550. DOI
Huang J. Fan Y. Zhang G. Ma Y. RSC Adv. 2020;10:13583–13590. doi: 10.1039/D0RA00670J. PubMed DOI PMC
Andrade M. Ansari L. Pombeiro A. Carvalho A. Martins A. Martins L. Catalysts. 2020;10:1029. doi: 10.3390/catal10091029. DOI
De Prins M. Verheyen E. Vanbutsele G. Sree S. P. Thomas K. Gilson J.-P. Vleugels J. Kirschhock C. E. A. Martens J. A. Catal. Today. 2019;334:3–12. doi: 10.1016/j.cattod.2019.03.016. DOI
Eliášová P. Opanasenko M. Wheatley P. S. Shamzhy M. Mazur M. Nachtigall P. Roth W. J. Morris R. E. J. Čejka Chem. Soc. Rev. 2015;44:7177–7206. doi: 10.1039/C5CS00045A. PubMed DOI
Rainer D. N. Rice C. M. Warrender S. J. Ashbrook S. E. Morris R. E. Chem. Sci. 2020;11:7060–7069. doi: 10.1039/D0SC02547J. PubMed DOI PMC
Ashbrook S. E. Davis Z. H. Morris R. E. Rice C. M. Chem. Sci. 2021;12:5016–5036. doi: 10.1039/D1SC00552A. PubMed DOI PMC
Cindro N. Tireli M. Karadeniz B. Mrla T. Užarević K. ACS Sustainable Chem. Eng. 2019;7:16301–16309. doi: 10.1021/acssuschemeng.9b03319. DOI
Seo T. Toyoshima N. Kubota K. Ito H. J. Am. Chem. Soc. 2021;143:6165–6175. doi: 10.1021/jacs.1c00906. PubMed DOI
Roth W. J. Nachtigall P. Morris R. E. Čejka J. Chem. Rev. 2014;114:4807–4837. doi: 10.1021/cr400600f. PubMed DOI
Jeon I.-Y. Bae S.-Y. Seo J.-M. Baek J.-B. Adv. Funct. Mater. 2015;25:6961–6975. doi: 10.1002/adfm.201502214. DOI
Burk L. Gliem M. Mülhaupt R. Macromol. Mater. Eng. 2019;304:1800496. doi: 10.1002/mame.201800496. DOI
Mendoza-Duarte J. M. Robles-Hernández F. C. Gomez-Esparza C. D. Miranda-Hernández J. G. Garay-Reyes C. G. Estrada-Guel I. Martínez-Sánchez R. J. Environ. Chem. Eng. 2020;8:104370. doi: 10.1016/j.jece.2020.104370. DOI