• This record comes from PubMed

New avenues for mechanochemistry in zeolite science

. 2021 Jul 06 ; 50 (26) : 8995-9009.

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print

Document type Journal Article

Zeolites are a class of microporous materials with tremendous value for large scale industrial applications such as catalysis, ion exchange, or gas separation. In addition to naturally ocurring variants, zeolites are made synthetically using hydrothermal synthesis, requiring temperatures beyond 100 °C and long reaction times up to weeks. Furthermore, specific applications may require more sophisticated synthesis conditions, expensive reagents, or post-synthetic modifications. Some of these issues can be tackled by using the reemerged technique of mechanochemistry. In 2014, Majano et al. reviewed the space and outlined several possibilities for the usage of mechanical forces in zeolite chemistry. Since then the field has seen many more publications employing mechanochemical methodology to further and improve the synthesis and properties of zeolite materials. The usage ranges from the activation of raw materials, rendering the synthesis of the widely used catalysts much more economical in terms of duration, atom efficiency, and production of waste, to post-synthetic modification of the materials leading to improved properties for target aplications. We present a short review of the advances that have been reported recently, highlight promising work and important studies, and give a perspective of potential future endeavours.

See more in PubMed

Boldyrev V. V. Tkáčová K. J. Mater. Synth. Process. 2000;8:121–132. doi: 10.1023/A:1011347706721. DOI

Delogu F. Deidda C. Mulas G. Schiffini L. Cocco G. J. Mater. Sci. 2004;39:5121–5124. doi: 10.1023/B:JMSC.0000039194.07422.be. DOI

Nasser A. Mingelgrin U. Appl. Clay Sci. 2012;67–68:141–150. doi: 10.1016/j.clay.2011.11.018. DOI

James S. L. Adams C. J. Bolm C. Braga D. Collier P. Friščić T. Grepioni F. Harris K. D. M. Hyett G. Jones W. Krebs A. Mack J. Maini L. Orpen A. G. Parkin I. P. Shearouse W. C. Steed J. W. Waddell D. C. Chem. Soc. Rev. 2012;41:413–447. doi: 10.1039/C1CS15171A. PubMed DOI

Boldyreva E. Chem. Soc. Rev. 2013;42:7719–7738. doi: 10.1039/C3CS60052A. PubMed DOI

Bowmaker G. A. Chem. Commun. 2013;49:334–348. doi: 10.1039/C2CC35694E. PubMed DOI

Baláž P. Achimovičová M. Baláž M. Billik P. Cherkezova-Zheleva Z. Criado J. M. Delogu F. Dutková E. Gaffet E. Gotor F. J. Kumar R. Mitov I. Rojac T. Senna M. Streletskii A. Wieczorek-Ciurowa K. Chem. Soc. Rev. 2013;42:7571. doi: 10.1039/C3CS35468G. PubMed DOI

Friščić T. James S. L. Boldyreva E. V. Bolm C. Jones W. Mack J. Steed J. W. Suslick K. S. Chem. Commun. 2015;51:6248–6256. doi: 10.1039/C5CC90113H. PubMed DOI

Do J.-L. Friščić T. ACS Cent. Sci. 2017;3:13–19. doi: 10.1021/acscentsci.6b00277. PubMed DOI PMC

Friščić T. Mottillo C. Titi H. M. Angew. Chem., Int. Ed. 2020;59:1018–1029. doi: 10.1002/anie.201906755. PubMed DOI

Mateti S. Mathesh M. Liu Z. Tao T. Ramireddy T. Glushenkov A. M. Yang W. Chen Y. I. Chem. Commun. 2021;57:1080–1092. doi: 10.1039/D0CC06581A. PubMed DOI

Tan D. García F. Chem. Soc. Rev. 2019;48:2274–2292. doi: 10.1039/C7CS00813A. PubMed DOI

Tan D. Friščić T. Eur. J. Org. Chem. 2018;2018:18–33. doi: 10.1002/ejoc.201700961. DOI

Amrute A. P. De Bellis J. Felderhoff M. Schüth F. Chem. – Eur. J. 2021;27:6819–6847. doi: 10.1002/chem.202004583. PubMed DOI PMC

Friščić T. Friić T. J. Mater. Chem. 2010;20:7599. doi: 10.1039/C0JM00872A. DOI

Zhang Q. Saito F. Adv. Powder Technol. 2012;23:523–531. doi: 10.1016/j.apt.2012.05.002. DOI

Ralphs K. Hardacre C. James S. L. Chem. Soc. Rev. 2013;42:7701–7718. doi: 10.1039/C3CS60066A. PubMed DOI

Šepelák V. Düvel A. Wilkening M. Becker K.-D. Heitjans P. Chem. Soc. Rev. 2013;42:7507. doi: 10.1039/C2CS35462D. PubMed DOI

Friščić T. Chem. Soc. Rev. 2012;41:3493. doi: 10.1039/C2CS15332G. PubMed DOI

Muñoz-Batista M. J. Rodriguez-Padron D. Puente-Santiago A. R. Luque R. ACS Sustainable Chem. Eng. 2018;6:9530–9544. doi: 10.1021/acssuschemeng.8b01716. DOI

Peh S. B. Wang Y. Zhao D. ACS Sustainable Chem. Eng. 2019;7:3647–3670. doi: 10.1021/acssuschemeng.8b05463. DOI

Szczęśniak B. Borysiuk S. Choma J. Jaroniec M. Mater. Horiz. 2020;7:1457–1473. doi: 10.1039/D0MH00081G. DOI

Rubio-Martinez M. Avci-Camur C. Thornton A. W. Imaz I. Maspoch D. Hill M. R. Chem. Soc. Rev. 2017;46:3453–3480. doi: 10.1039/C7CS00109F. PubMed DOI

Li P. Cheng F.-F. Xiong W.-W. Zhang Q. Inorg. Chem. Front. 2018;5:2693–2708. doi: 10.1039/C8QI00543E. DOI

Tanaka S., in Metal-Organic Frameworks for Biomedical Applications, Elsevier, 2020, pp. 197–222

Stolar T. Užarević K. CrystEngComm. 2020;22:4511–4525. doi: 10.1039/D0CE00091D. DOI

Chen B. Yang Z. Zhu Y. Xia Y. J. Mater. Chem. A. 2014;2:16811–16831. doi: 10.1039/C4TA02984D. DOI

Zhang P. Dai S. J. Mater. Chem. A. 2017;5:16118–16127. doi: 10.1039/C7TA04829G. DOI

Majano G. Borchardt L. Mitchell S. Valtchev V. Pérez-Ramírez J. Microporous Mesoporous Mater. 2014;194:106–114. doi: 10.1016/j.micromeso.2014.04.006. DOI

Weckhuysen B. M. Yu J. Chem. Soc. Rev. 2015;44:7022–7024. doi: 10.1039/C5CS90100F. PubMed DOI

Shamzhy M. Opanasenko M. Concepción P. Martínez A. Chem. Soc. Rev. 2019;48:1095–1149. doi: 10.1039/C8CS00887F. PubMed DOI

Kosinov N. Gascon J. Kapteijn F. Hensen E. J. M. J. Membr. Sci. 2016;499:65–79. doi: 10.1016/j.memsci.2015.10.049. DOI

Cundy C. S. Cox P. A. Chem. Rev. 2003;103:663–702. doi: 10.1021/cr020060i. PubMed DOI

Cundy C. S. Cox P. A. Microporous Mesoporous Mater. 2005;82:1–78. doi: 10.1016/j.micromeso.2005.02.016. DOI

Baerlocher C. and McCusker L. B., Database of Zeolite Structures, http://www.iza-structure.org/databases/, (accessed 30 April 2021)

Gordina N. E. Prokof'ev V. Y. Il'in A. P. Russ. J. Appl. Chem. 2003;76:661–662. doi: 10.1023/A:1025772111644. DOI

Prokofév V. Y. Gordina N. E. Zhidkova A. B. Efremov A. M. J. Mater. Sci. 2012;47:5385–5392. doi: 10.1007/s10853-012-6421-3. DOI

Prokof'ev V. Y. Gordina N. E. Zhidkova A. B. Russ. J. Appl. Chem. 2012;85:1077–1082. doi: 10.1134/S1070427212070142. DOI

Prokof'ev V. Y. Gordina N. E. Russ. J. Appl. Chem. 2013;86:332–338. doi: 10.1134/S1070427213030075. DOI

Gordina N. E. Prokof'ev V. Y. Kochetkov S. P. Russ. J. Gen. Chem. 2018;88:1981–1989. doi: 10.1134/S1070363218090402. DOI

Prokof'ev V. Y. Gordina N. E. Efremov A. M. J. Mater. Sci. 2013;48:6276–6285. doi: 10.1007/s10853-013-7425-3. DOI

Wu Q. Meng X. Gao X. Xiao F.-S. Acc. Chem. Res. 2018;51:1396–1403. doi: 10.1021/acs.accounts.8b00057. PubMed DOI

Mei J. Duan A. Wang X. Materials. 2021;14:788. doi: 10.3390/ma14040788. PubMed DOI PMC

Kornas A. Olszówka J. E. Klein P. Pashkova V. Catalysts. 2021;11:246. doi: 10.3390/catal11020246. DOI

Ren L. Wu Q. Yang C. Zhu L. Li C. Zhang P. Zhang H. Meng X. Xiao F.-S. J. Am. Chem. Soc. 2012;134:15173–15176. doi: 10.1021/ja3044954. PubMed DOI

Jin Y. Chen X. Sun Q. Sheng N. Liu Y. Bian C. Chen F. Meng X. Xiao F.-S. Chem. – Eur. J. 2014;20:17616–17623. doi: 10.1002/chem.201403890. PubMed DOI

Zhao X. Gao X. Zhang X. Hao Z. Microporous Mesoporous Mater. 2017;242:160–165. doi: 10.1016/j.micromeso.2017.01.028. DOI

Jin Y. Sun Q. Qi G. Yang C. Xu J. Chen F. Meng X. Deng F. Xiao F.-S. Angew. Chem., Int. Ed. 2013;52:9172–9175. doi: 10.1002/anie.201302672. PubMed DOI

Du Y. Feng B. Jiang Y. Yuan L. Huang K. Li J. Eur. J. Inorg. Chem. 2018;2018:2599–2606. doi: 10.1002/ejic.201800134. DOI

Zhu L. Zhang J. Wang L. Wu Q. Bian C. Pan S. Meng X. Xiao F. S. J. Mater. Chem. A. 2015;3:14093–14095. doi: 10.1039/C5TA02680F. DOI

Liu X. Chu Y. Wang Q. Wang W. Wang C. Xu J. Deng F. Solid State Nucl. Magn. Reson. 2017;87:1–9. doi: 10.1016/j.ssnmr.2017.05.002. PubMed DOI

Zhao X. Duan W. Zhang X. Ji D. Zhao Y. Li G. React. Kinet., Mech. Catal. 2018;125:1055–1070. doi: 10.1007/s11144-018-1465-2. DOI

Shakeri M. ChemistrySelect. 2019;4:7566–7571. doi: 10.1002/slct.201901460. DOI

Xiao Y. Sheng N. Chu Y. Wang Y. Wu Q. Liu X. Deng F. Meng X. Feng Z. Microporous Mesoporous Mater. 2017;237:201–209. doi: 10.1016/j.micromeso.2016.09.029. DOI

Nada M. H. Gillan E. G. Larsen S. C. Microporous Mesoporous Mater. 2019;276:23–28. doi: 10.1016/j.micromeso.2018.09.009. DOI

Nada M. H. Larsen S. C. Gillan E. G. Solid State Sci. 2019;94:15–22. doi: 10.1016/j.solidstatesciences.2019.05.009. DOI

Nada M. H. Larsen S. C. Gillan E. G. Nanoscale Adv. 2019;1:3918–3928. doi: 10.1039/C9NA00399A. PubMed DOI PMC

Kornas A. Olszówka J. E. Urbanova M. Mlekodaj K. Brabec L. Rathousky J. Dedecek J. Pashkova V. Eur. J. Inorg. Chem. 2020;2020:2791–2797. doi: 10.1002/ejic.202000320. DOI

Soekiman C. N. Miyake K. Hirota Y. Uchida Y. Tanaka S. Miyamoto M. Nishiyama N. Microporous Mesoporous Mater. 2019;273:273–275. doi: 10.1016/j.micromeso.2018.06.044. DOI

Miyagawa S. Miyake K. Hirota Y. Nishiyama N. Miyamoto M. Oumi Y. Tanaka S. Microporous Mesoporous Mater. 2019;278:219–224. doi: 10.1016/j.micromeso.2018.11.037. DOI

Zhao X. Zhao J. Wen J. Li A. Li G. Wang X. Microporous Mesoporous Mater. 2015;213:192–196. doi: 10.1016/j.micromeso.2015.03.031. DOI

Li J. Corma A. Yu J. Chem. Soc. Rev. 2015;44:7112–7127. doi: 10.1039/C5CS00023H. PubMed DOI

Opanasenko M. Shamzhy M. Wang Y. Yan W. Nachtigall P. Čejka J. Angew. Chem., Int. Ed. 2020;59:19380–19389. doi: 10.1002/anie.202005776. PubMed DOI

Yamamoto K. Garcia S. E. B. Saito F. Muramatsu A. Chem. Lett. 2006;35:570–571. doi: 10.1246/cl.2006.570. DOI

García S. E. B. Yamamoto K. Saito F. Muramatsu A. J. Jpn. Pet. Inst. 2007;50:53–60. doi: 10.1627/jpi.50.53. DOI

Yamamoto K. Borjas García S. E. Muramatsu A. Microporous Mesoporous Mater. 2007;101:90–96. doi: 10.1016/j.micromeso.2006.09.034. DOI

Borjas Garcia S. E. Yamamoto K. Muramatsu A. J. Mater. Sci. 2008;43:2367–2371. doi: 10.1007/s10853-007-2104-x. DOI

Iwasaki T. Isaka M. Nakamura H. Yasuda M. Watano S. Microporous Mesoporous Mater. 2012;150:1–6. doi: 10.1016/j.micromeso.2011.09.023. DOI

Zhang J. Qiao S. R. Adv. Mater. Res. 2013;652–654:693–697.

Zhang M. Lin Z. Huang Q. Zhu Y. Hu H. Chen X. Adv. Powder Technol. 2020;31:2025–2034. doi: 10.1016/j.apt.2020.02.037. DOI

Iida T. Takagaki A. Kohara S. Okubo T. Wakihara T. ChemNanoMat. 2015;1:155–158. doi: 10.1002/cnma.201500038. DOI

Kanie K. Sakaguchi M. Muto F. Horie M. Nakaya M. Yokoi T. Muramatsu A. Sci. Technol. Adv. Mater. 2018;19:545–553. doi: 10.1080/14686996.2018.1497404. PubMed DOI PMC

Iida T. Sato M. Liu Z. Numako C. Nakahira A. Okubo T. Wakihara T. Chem. Lett. 2014;43:1346–1348. doi: 10.1246/cl.140340. DOI

Iida T. Sato M. Numako C. Nakahira A. Kohara S. Okubo T. Wakihara T. J. Mater. Chem. A. 2015;3:6215–6222. doi: 10.1039/C4TA06246A. DOI

Yabushita M. Yoshida M. Muto F. Horie M. Kunitake Y. Nishitoba T. Maki S. Kanie K. Yokoi T. Muramatsu A. Mol. Catal. 2019;478:110579. doi: 10.1016/j.mcat.2019.110579. DOI

Hu P. Iyoki K. Yamada H. Yanaba Y. Ohara K. Katada N. Wakihara T. Microporous Mesoporous Mater. 2019;288:109594. doi: 10.1016/j.micromeso.2019.109594. DOI

Yamamoto K. Ikeda T. Ideta C. Yasuda M. Cryst. Growth Des. 2012;12:1354–1361. doi: 10.1021/cg201442u. DOI

Ikeda T. Ideta C. Yamamoto K. Z. Kristallogr. – Cryst. Mater. 2013;228:173–179. doi: 10.1524/zkri.2013.1591. DOI

Yamamoto K. Ikeda T. Ideta C. Microporous Mesoporous Mater. 2013;172:13–19. doi: 10.1016/j.micromeso.2013.01.004. DOI

Yabushita M. Kobayashi H. Osuga R. Nakaya M. Matsubara M. Maki S. Kanie K. Muramatsu A. Ind. Eng. Chem. Res. 2021;60:2079–2088. doi: 10.1021/acs.iecr.0c05386. DOI

Valtchev V. Mintova S. Dimov V. Toneva A. Radev D. Zeolites. 1995;15:193–197. doi: 10.1016/0144-2449(94)00058-Z. DOI

Xu N. Meng D. Tang X. Kong X. Kong L. Zhang Y. Qiu H. Wang M. Zhang Y. Sep. Purif. Technol. 2020;253:117505. doi: 10.1016/j.seppur.2020.117505. DOI

Miyake K. Ono K. Nakai M. Hirota Y. Uchida Y. Tanaka S. Miyamoto M. Nishiyama N. ChemistrySelect. 2017;2:7651–7653. doi: 10.1002/slct.201701593. DOI

Jiang J. Wang X. Zhang Y. Liu D. Gu X. Microporous Mesoporous Mater. 2015;215:98–108. doi: 10.1016/j.micromeso.2015.05.033. DOI

Cheng P. Song M. Zhang H. Xuan Y. Wu C. J. Mater. Sci. 2019;54:4573–4578. doi: 10.1007/s10853-018-3178-3. DOI

Zhang H. Wu C. Song M. Lu T. Wang W. Wang Z. Yan W. Cheng P. Zhao Z. Microporous Mesoporous Mater. 2021;310:110633. doi: 10.1016/j.micromeso.2020.110633. DOI

Feng G. Cheng P. Yan W. Boronat M. Li X. Su J.-H. Wang J. Li Y. Corma A. Xu R. Yu J. Science. 2016;351:1188–1191. doi: 10.1126/science.aaf1559. PubMed DOI

Mintova S. Gilson J. P. Valtchev V. Nanoscale. 2013;5:6693–6703. doi: 10.1039/C3NR01629C. PubMed DOI

Valtchev V. Majano G. Mintova S. Pérez-Ramírez J. Chem. Soc. Rev. 2013;42:263–290. doi: 10.1039/C2CS35196J. PubMed DOI

Yousefi E. Falamaki C. Chem. Eng. J. 2013;221:247–253. doi: 10.1016/j.cej.2013.01.109. DOI

Hammond C. Conrad S. Hermans I. Angew. Chem., Int. Ed. 2012;51:11736–11739. doi: 10.1002/anie.201206193. PubMed DOI

Hammond C. Padovan D. Al-Nayili A. Wells P. P. Gibson E. K. Dimitratos N. ChemCatChem. 2015;7:3322–3331. doi: 10.1002/cctc.201500545. PubMed DOI PMC

Joshi H. Ochoa-Hernández C. Nürenberg E. Kang L. Wang F. R. Weidenthaler C. Schmidt W. Schüth F. Microporous Mesoporous Mater. 2020;309:110566. doi: 10.1016/j.micromeso.2020.110566. DOI

Kosanović C. Bronić J. Subotić B. Šmit I. Stubičar M. Tonejc A. Yamamoto T. Zeolites. 1993;13:261–268. doi: 10.1016/0144-2449(93)90004-M. DOI

Zielinski P. A. Van Neste A. Akolekar D. B. Kaliaguine S. Microporous Mater. 1995;5:123–133. doi: 10.1016/0927-6513(95)00050-J. DOI

Wakihara T. Ihara A. Inagaki S. Tatami J. Sato K. Komeya K. Meguro T. Kubota Y. Nakahira A. Cryst. Growth Des. 2011;11:5153–5158. doi: 10.1021/cg201078r. DOI

Wakihara T. Ichikawa R. Tatami J. Endo A. Yoshida K. Sasaki Y. Komeya K. Meguro T. Cryst. Growth Des. 2011;11:955–958. doi: 10.1021/cg2001656. DOI

Wakihara T. Sato K. Sato K. Tatami J. Kohara S. Komeya K. Meguro T. J. Ceram. Soc. Jpn. 2012;120:341–343. doi: 10.2109/jcersj2.120.341. DOI

Inagaki S. Shinoda S. Hayashi S. Wakihara T. Yamazaki H. Kondo J. N. Kubota Y. Catal. Sci. Technol. 2016;6:2598–2604. doi: 10.1039/C5CY01644D. DOI

Iyoki K. Kikumasa K. Onishi T. Yonezawa Y. Chokkalingam A. Yanaba Y. Matsumoto T. Osuga R. Elangovan S. P. Kondo J. N. Endo A. Okubo T. Wakihara T. J. Am. Chem. Soc. 2020;142:3931–3938. doi: 10.1021/jacs.9b12709. PubMed DOI

Yang M. Tian P. Wang C. Yuan Y. Yang Y. Xu S. He Y. Liu Z. Chem. Commun. 2014;50:1845. doi: 10.1039/C3CC48264B. PubMed DOI

Anand C. Yamaguchi Y. Liu Z. Ibe S. Elangovan S. P. Ishii T. Ishikawa T. Endo A. Okubo T. Wakihara T. Sci. Rep. 2016;6:29210. doi: 10.1038/srep29210. PubMed DOI PMC

Liu Z. Zhu J. Wakihara T. Okubo T. Inorg. Chem. Front. 2019;6:14–31. doi: 10.1039/C8QI00939B. DOI

Liu Z. Nomura N. Nishioka D. Hotta Y. Matsuo T. Oshima K. Yanaba Y. Yoshikawa T. Ohara K. Kohara S. Takewaki T. Okubo T. Wakihara T. Chem. Commun. 2015;51:12567–12570. doi: 10.1039/C5CC04542H. PubMed DOI

Zhu J. Liu Z. Endo A. Yanaba Y. Yoshikawa T. Wakihara T. Okubo T. CrystEngComm. 2017;19:632–640. doi: 10.1039/C6CE02237E. DOI

Chokkalingam A. Iyoki K. Hoshikawa N. Onozuka H. Chaikittisilp W. Tsutsuminai S. Takewaki T. Wakihara T. Okubo T. React. Chem. Eng. 2020;5:2260–2266. doi: 10.1039/D0RE00309C. DOI

Yoshioka T. Liu Z. Iyoki K. Chokkalingam A. Yonezawa Y. Hotta Y. Ohnishi R. Matsuo T. Yanaba Y. Ohara K. Takewaki T. Sano T. Okubo T. Wakihara T. React. Chem. Eng. 2021;6:74–81. doi: 10.1039/D0RE00219D. DOI

Peng C. Liu Z. Horimoto A. Anand C. Yamada H. Ohara K. Sukenaga S. Ando M. Shibata H. Takewaki T. Mukti R. R. Okubo T. Wakihara T. Microporous Mesoporous Mater. 2018;255:192–199. doi: 10.1016/j.micromeso.2017.07.042. DOI

Kurniawan T. Muraza O. Hakeem A. S. Al-Amer A. M. Cryst. Growth Des. 2017;17:3313–3320. doi: 10.1021/acs.cgd.7b00295. DOI

Kosanović C. Bronić J. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Zeolites. 1995;15:247–252. doi: 10.1016/0144-2449(94)00022-K. DOI

Kosanović C. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Zeolites. 1995;15:51–57. doi: 10.1016/0144-2449(94)00018-N. DOI

Kosanović C. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Čižmek A. Subotić B. Šmit I. Stubičar M. Tonejc A. Zeolites. 1995;15:632–636. doi: 10.1016/0144-2449(95)00036-6. DOI

Saepurahman R. H. Mater. Chem. Phys. 2018;220:322–330. doi: 10.1016/j.matchemphys.2018.08.080. DOI

Nguyen V. D. Bui Q. M. Kynicky J. Vsiansky D. Cryst. Res. Technol. 2020;55:1900180. doi: 10.1002/crat.201900180. DOI

Sydorchuk V. Vasylechko V. Khyzhun O. Gryshchouk G. Khalameida S. Vasylechko L. Appl. Catal., A. 2021;610:117930. doi: 10.1016/j.apcata.2020.117930. DOI

Prajitno M. Y. Harbottle D. Hondow N. Zhang H. Hunter T. N. J. Environ. Chem. Eng. 2020;8:102991. doi: 10.1016/j.jece.2019.102991. DOI

Panda D., Singh S. K. and Anil Kumar E., Springer Proceedings in Energy, 2020, vol. 2, pp. 541–549

Anis S. F. Lalia B. S. Hashaikeh R. Hilal N. Sep. Purif. Technol. 2020;242:116824. doi: 10.1016/j.seppur.2020.116824. DOI

Yu Q. Li J. Wei C. Zeng S. Xu S. Liu Z. Chin. J. Catal. 2020;41:1268–1278. doi: 10.1016/S1872-2067(20)63567-7. DOI

Inagaki S. Sato K. Hayashi S. Tatami J. Kubota Y. Wakihara T. ACS Appl. Mater. Interfaces. 2015;7:4488–4493. doi: 10.1021/am507982n. PubMed DOI

Kadja G. T. M. Suprianti T. R. Ilmi M. M. Khalil M. Mukti R. R. Subagjo Microporous Mesoporous Mater. 2020;308:110550. doi: 10.1016/j.micromeso.2020.110550. DOI

Huang J. Fan Y. Zhang G. Ma Y. RSC Adv. 2020;10:13583–13590. doi: 10.1039/D0RA00670J. PubMed DOI PMC

Andrade M. Ansari L. Pombeiro A. Carvalho A. Martins A. Martins L. Catalysts. 2020;10:1029. doi: 10.3390/catal10091029. DOI

De Prins M. Verheyen E. Vanbutsele G. Sree S. P. Thomas K. Gilson J.-P. Vleugels J. Kirschhock C. E. A. Martens J. A. Catal. Today. 2019;334:3–12. doi: 10.1016/j.cattod.2019.03.016. DOI

Eliášová P. Opanasenko M. Wheatley P. S. Shamzhy M. Mazur M. Nachtigall P. Roth W. J. Morris R. E. J. Čejka Chem. Soc. Rev. 2015;44:7177–7206. doi: 10.1039/C5CS00045A. PubMed DOI

Rainer D. N. Rice C. M. Warrender S. J. Ashbrook S. E. Morris R. E. Chem. Sci. 2020;11:7060–7069. doi: 10.1039/D0SC02547J. PubMed DOI PMC

Ashbrook S. E. Davis Z. H. Morris R. E. Rice C. M. Chem. Sci. 2021;12:5016–5036. doi: 10.1039/D1SC00552A. PubMed DOI PMC

Cindro N. Tireli M. Karadeniz B. Mrla T. Užarević K. ACS Sustainable Chem. Eng. 2019;7:16301–16309. doi: 10.1021/acssuschemeng.9b03319. DOI

Seo T. Toyoshima N. Kubota K. Ito H. J. Am. Chem. Soc. 2021;143:6165–6175. doi: 10.1021/jacs.1c00906. PubMed DOI

Roth W. J. Nachtigall P. Morris R. E. Čejka J. Chem. Rev. 2014;114:4807–4837. doi: 10.1021/cr400600f. PubMed DOI

Jeon I.-Y. Bae S.-Y. Seo J.-M. Baek J.-B. Adv. Funct. Mater. 2015;25:6961–6975. doi: 10.1002/adfm.201502214. DOI

Burk L. Gliem M. Mülhaupt R. Macromol. Mater. Eng. 2019;304:1800496. doi: 10.1002/mame.201800496. DOI

Mendoza-Duarte J. M. Robles-Hernández F. C. Gomez-Esparza C. D. Miranda-Hernández J. G. Garay-Reyes C. G. Estrada-Guel I. Martínez-Sánchez R. J. Environ. Chem. Eng. 2020;8:104370. doi: 10.1016/j.jece.2020.104370. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...