-
Je něco špatně v tomto záznamu ?
Characterization of lapachol cytotoxicity: contribution of glutathione depletion for oxidative stress in Saccharomyces cerevisiae
FAV. Castro, GFM. de Souza, MD. Pereira,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- alkylace MeSH
- glutamátcysteinligasa genetika MeSH
- glutathion analýza antagonisté a inhibitory MeSH
- mitochondrie metabolismus MeSH
- mutace MeSH
- naftochinony farmakologie MeSH
- oxidační stres * MeSH
- peroxidace lipidů MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae účinky léků genetika metabolismus MeSH
- superoxiddismutasa 1 genetika MeSH
- Publikační typ
- časopisecké články MeSH
Over the years, quinones or its derivatives have been extensively studied due to their broad therapeutic spectrum. However, due to the significant structural differences between the individual naturally occurring quinones, investigation of the precise mechanism of their action is essential. In this context, we have analyzed the mechanism of lapachol [4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione] toxicity using Saccharomyces cerevisiae as eukaryotic model organism. Analyzing yeast (wild type, sod1∆, and gsh1∆) cell growth, we observed a strong cytostatic effect caused by lapachol exposure. Moreover, survival of cells was affected by time- and dose-dependent manner. Interestingly, sod1∆ cells were more prone to lapachol toxicity. In this sense, mitochondrial functioning of sod1∆ cells were highly affected by exposure to this quinone. Lapachol also decreased glutathione (GSH) levels in wild type and sod1∆ cells even though glutathione disulfide (GSSG) remained unchanged. We believe that reduction of GSH contents has contributed to the enhancement of lipid peroxidation and intracellular oxidation, effect much more pronounced in sod1∆ cells. Overall, the collected data suggest that although lapachol can act as an oxidant, it seems that the main mechanism of its action initially consists in alkylation of intracellular targets such as GSH and then generating oxidative stress.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024236
- 003
- CZ-PrNML
- 005
- 20201208102219.0
- 007
- ta
- 008
- 201208s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-019-00722-2 $2 doi
- 035 __
- $a (PubMed)31183610
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Castro, Frederico A V $u Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, 5° andar, Lab. 549-C, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21.941-909, Brazil.
- 245 10
- $a Characterization of lapachol cytotoxicity: contribution of glutathione depletion for oxidative stress in Saccharomyces cerevisiae / $c FAV. Castro, GFM. de Souza, MD. Pereira,
- 520 9_
- $a Over the years, quinones or its derivatives have been extensively studied due to their broad therapeutic spectrum. However, due to the significant structural differences between the individual naturally occurring quinones, investigation of the precise mechanism of their action is essential. In this context, we have analyzed the mechanism of lapachol [4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione] toxicity using Saccharomyces cerevisiae as eukaryotic model organism. Analyzing yeast (wild type, sod1∆, and gsh1∆) cell growth, we observed a strong cytostatic effect caused by lapachol exposure. Moreover, survival of cells was affected by time- and dose-dependent manner. Interestingly, sod1∆ cells were more prone to lapachol toxicity. In this sense, mitochondrial functioning of sod1∆ cells were highly affected by exposure to this quinone. Lapachol also decreased glutathione (GSH) levels in wild type and sod1∆ cells even though glutathione disulfide (GSSG) remained unchanged. We believe that reduction of GSH contents has contributed to the enhancement of lipid peroxidation and intracellular oxidation, effect much more pronounced in sod1∆ cells. Overall, the collected data suggest that although lapachol can act as an oxidant, it seems that the main mechanism of its action initially consists in alkylation of intracellular targets such as GSH and then generating oxidative stress.
- 650 _2
- $a alkylace $7 D000478
- 650 _2
- $a glutamátcysteinligasa $x genetika $7 D005721
- 650 _2
- $a glutathion $x analýza $x antagonisté a inhibitory $7 D005978
- 650 _2
- $a peroxidace lipidů $7 D015227
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a naftochinony $x farmakologie $7 D009285
- 650 12
- $a oxidační stres $7 D018384
- 650 _2
- $a Saccharomyces cerevisiae $x účinky léků $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $7 D029701
- 650 _2
- $a superoxiddismutasa 1 $x genetika $7 D000072105
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a de Souza, Gabriel F M $u Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, 5° andar, Lab. 549-C, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21.941-909, Brazil.
- 700 1_
- $a Pereira, Marcos D $u Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, 5° andar, Lab. 549-C, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21.941-909, Brazil. marcosdp@iq.ufrj.br.
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 65, č. 1 (2020), s. 197-204
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31183610 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20201208 $b ABA008
- 991 __
- $a 20201208102215 $b ABA008
- 999 __
- $a ok $b bmc $g 1593191 $s 1114917
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 65 $c 1 $d 197-204 $e 20190611 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- LZP __
- $a Pubmed-20201208