Characterization of lapachol cytotoxicity: contribution of glutathione depletion for oxidative stress in Saccharomyces cerevisiae
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
31183610
DOI
10.1007/s12223-019-00722-2
PII: 10.1007/s12223-019-00722-2
Knihovny.cz E-resources
- MeSH
- Alkylation MeSH
- Glutamate-Cysteine Ligase genetics MeSH
- Glutathione analysis antagonists & inhibitors MeSH
- Mitochondria metabolism MeSH
- Mutation MeSH
- Naphthoquinones pharmacology MeSH
- Oxidative Stress * MeSH
- Lipid Peroxidation MeSH
- Saccharomyces cerevisiae Proteins genetics MeSH
- Saccharomyces cerevisiae drug effects genetics metabolism MeSH
- Superoxide Dismutase-1 genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glutamate-Cysteine Ligase MeSH
- Glutathione MeSH
- GSH1 protein, S cerevisiae MeSH Browser
- lapachol MeSH Browser
- Naphthoquinones MeSH
- Saccharomyces cerevisiae Proteins MeSH
- Superoxide Dismutase-1 MeSH
Over the years, quinones or its derivatives have been extensively studied due to their broad therapeutic spectrum. However, due to the significant structural differences between the individual naturally occurring quinones, investigation of the precise mechanism of their action is essential. In this context, we have analyzed the mechanism of lapachol [4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione] toxicity using Saccharomyces cerevisiae as eukaryotic model organism. Analyzing yeast (wild type, sod1∆, and gsh1∆) cell growth, we observed a strong cytostatic effect caused by lapachol exposure. Moreover, survival of cells was affected by time- and dose-dependent manner. Interestingly, sod1∆ cells were more prone to lapachol toxicity. In this sense, mitochondrial functioning of sod1∆ cells were highly affected by exposure to this quinone. Lapachol also decreased glutathione (GSH) levels in wild type and sod1∆ cells even though glutathione disulfide (GSSG) remained unchanged. We believe that reduction of GSH contents has contributed to the enhancement of lipid peroxidation and intracellular oxidation, effect much more pronounced in sod1∆ cells. Overall, the collected data suggest that although lapachol can act as an oxidant, it seems that the main mechanism of its action initially consists in alkylation of intracellular targets such as GSH and then generating oxidative stress.
See more in PubMed
Chem Res Toxicol. 2000 Mar;13(3):135-60 PubMed
Arch Biochem Biophys. 1995 Feb 1;316(2):909-16 PubMed
Oncol Rep. 2008 Jul;20(1):225-31 PubMed
Biochim Biophys Acta. 2007 Feb;1770(2):213-20 PubMed
J Ethnopharmacol. 2009 Jan 12;121(1):1-13 PubMed
Mol Pharmacol. 1988 Dec;34(6):829-36 PubMed
Expert Opin Ther Pat. 2017 Oct;27(10):1111-1121 PubMed
Genet Mol Biol. 2010 Jul;33(3):558-63 PubMed
Mutat Res. 2004 Sep;567(1):1-61 PubMed
FEBS Lett. 1997 Jun 30;410(2-3):219-22 PubMed
Int Immunopharmacol. 2010 Nov;10(11):1463-73 PubMed
FEBS Lett. 1985 Jun 3;185(1):19-23 PubMed
Redox Rep. 2007;12(5):236-44 PubMed
An Acad Bras Cienc. 2002 Jun;74(2):211-21 PubMed
Bioelectrochemistry. 2003 Apr;59(1-2):85-7 PubMed
Chem Res Toxicol. 2004 Jan;17(1):55-62 PubMed
Nature. 2014 Jan 16;505(7483):335-43 PubMed
Cancer Lett. 2008 Jan 18;259(1):82-98 PubMed
Curr Drug Metab. 2002 Aug;3(4):425-38 PubMed
Xenobiotica. 1990 Apr;20(4):333-50 PubMed
Braz J Med Biol Res. 2007 Oct;40(10):1399-402 PubMed
J Biol Chem. 1987 Aug 15;262(23):11080-7 PubMed
J Biol Chem. 1996 May 24;271(21):12275-80 PubMed
Toxicology. 2004 Sep 1;201(1-3):185-96 PubMed
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17582-7 PubMed
Chem Biol Interact. 1985 Oct;55(1-2):177-84 PubMed
Environ Mol Mutagen. 2001;38(2-3):153-8 PubMed
Anticancer Agents Med Chem. 2013 Mar;13(3):456-63 PubMed
Planta Med. 2010 Jun;76(9):858-62 PubMed
Braz J Microbiol. 2013 Dec 17;44(3):993-1000 PubMed
Toxicol Appl Pharmacol. 2008 Jun 1;229(2):232-8 PubMed
Mutat Res. 1992 Jan;265(1):103-48 PubMed
Chem Biol Interact. 1998 May 15;113(2):133-44 PubMed
Nat Commun. 2014 Mar 19;5:3446 PubMed
J Microbiol Methods. 2000 Jun;41(1):19-21 PubMed
Cell. 2013 Jan 17;152(1-2):224-35 PubMed
Adv Appl Microbiol. 2013;85:1-41 PubMed
Microbiology. 1994 Mar;140 ( Pt 3):569-76 PubMed
Biochim Biophys Acta. 2003 Mar 17;1620(1-3):245-51 PubMed
Biochem Mol Biol Int. 1998 Apr;44(4):747-59 PubMed
Free Radic Biol Med. 2015 Mar;80:67-76 PubMed
Curr Med Chem. 2003 Dec;10(23):2495-505 PubMed
BMC Microbiol. 2001;1:11 PubMed
PLoS One. 2008;3(12):e3999 PubMed