• This record comes from PubMed

Characterization of lapachol cytotoxicity: contribution of glutathione depletion for oxidative stress in Saccharomyces cerevisiae

. 2020 Feb ; 65 (1) : 197-204. [epub] 20190611

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 31183610
DOI 10.1007/s12223-019-00722-2
PII: 10.1007/s12223-019-00722-2
Knihovny.cz E-resources

Over the years, quinones or its derivatives have been extensively studied due to their broad therapeutic spectrum. However, due to the significant structural differences between the individual naturally occurring quinones, investigation of the precise mechanism of their action is essential. In this context, we have analyzed the mechanism of lapachol [4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione] toxicity using Saccharomyces cerevisiae as eukaryotic model organism. Analyzing yeast (wild type, sod1∆, and gsh1∆) cell growth, we observed a strong cytostatic effect caused by lapachol exposure. Moreover, survival of cells was affected by time- and dose-dependent manner. Interestingly, sod1∆ cells were more prone to lapachol toxicity. In this sense, mitochondrial functioning of sod1∆ cells were highly affected by exposure to this quinone. Lapachol also decreased glutathione (GSH) levels in wild type and sod1∆ cells even though glutathione disulfide (GSSG) remained unchanged. We believe that reduction of GSH contents has contributed to the enhancement of lipid peroxidation and intracellular oxidation, effect much more pronounced in sod1∆ cells. Overall, the collected data suggest that although lapachol can act as an oxidant, it seems that the main mechanism of its action initially consists in alkylation of intracellular targets such as GSH and then generating oxidative stress.

See more in PubMed

Chem Res Toxicol. 2000 Mar;13(3):135-60 PubMed

Arch Biochem Biophys. 1995 Feb 1;316(2):909-16 PubMed

Oncol Rep. 2008 Jul;20(1):225-31 PubMed

Biochim Biophys Acta. 2007 Feb;1770(2):213-20 PubMed

J Ethnopharmacol. 2009 Jan 12;121(1):1-13 PubMed

Mol Pharmacol. 1988 Dec;34(6):829-36 PubMed

Expert Opin Ther Pat. 2017 Oct;27(10):1111-1121 PubMed

Genet Mol Biol. 2010 Jul;33(3):558-63 PubMed

Mutat Res. 2004 Sep;567(1):1-61 PubMed

FEBS Lett. 1997 Jun 30;410(2-3):219-22 PubMed

Int Immunopharmacol. 2010 Nov;10(11):1463-73 PubMed

FEBS Lett. 1985 Jun 3;185(1):19-23 PubMed

Redox Rep. 2007;12(5):236-44 PubMed

An Acad Bras Cienc. 2002 Jun;74(2):211-21 PubMed

Bioelectrochemistry. 2003 Apr;59(1-2):85-7 PubMed

Chem Res Toxicol. 2004 Jan;17(1):55-62 PubMed

Nature. 2014 Jan 16;505(7483):335-43 PubMed

Cancer Lett. 2008 Jan 18;259(1):82-98 PubMed

Curr Drug Metab. 2002 Aug;3(4):425-38 PubMed

Xenobiotica. 1990 Apr;20(4):333-50 PubMed

Braz J Med Biol Res. 2007 Oct;40(10):1399-402 PubMed

J Biol Chem. 1987 Aug 15;262(23):11080-7 PubMed

J Biol Chem. 1996 May 24;271(21):12275-80 PubMed

Toxicology. 2004 Sep 1;201(1-3):185-96 PubMed

Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17582-7 PubMed

Chem Biol Interact. 1985 Oct;55(1-2):177-84 PubMed

Environ Mol Mutagen. 2001;38(2-3):153-8 PubMed

Anticancer Agents Med Chem. 2013 Mar;13(3):456-63 PubMed

Planta Med. 2010 Jun;76(9):858-62 PubMed

Braz J Microbiol. 2013 Dec 17;44(3):993-1000 PubMed

Toxicol Appl Pharmacol. 2008 Jun 1;229(2):232-8 PubMed

Mutat Res. 1992 Jan;265(1):103-48 PubMed

Chem Biol Interact. 1998 May 15;113(2):133-44 PubMed

Nat Commun. 2014 Mar 19;5:3446 PubMed

J Microbiol Methods. 2000 Jun;41(1):19-21 PubMed

Cell. 2013 Jan 17;152(1-2):224-35 PubMed

Adv Appl Microbiol. 2013;85:1-41 PubMed

Microbiology. 1994 Mar;140 ( Pt 3):569-76 PubMed

Biochim Biophys Acta. 2003 Mar 17;1620(1-3):245-51 PubMed

Biochem Mol Biol Int. 1998 Apr;44(4):747-59 PubMed

Free Radic Biol Med. 2015 Mar;80:67-76 PubMed

Curr Med Chem. 2003 Dec;10(23):2495-505 PubMed

BMC Microbiol. 2001;1:11 PubMed

PLoS One. 2008;3(12):e3999 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...