Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25153696
PubMed Central
PMC4143283
DOI
10.1371/journal.pone.0105539
PII: PONE-D-14-21036
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny vezikulární transportní genetika metabolismus MeSH
- genetická transkripce fyziologie MeSH
- mastocyty metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- receptory IgE metabolismus MeSH
- signální transdukce imunologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny vezikulární transportní MeSH
- LAB protein, mouse MeSH Prohlížeč
- receptory IgE MeSH
- vápník MeSH
Non-T cell activation linker (NTAL; also called LAB or LAT2) is a transmembrane adaptor protein that is expressed in a subset of hematopoietic cells, including mast cells. There are conflicting reports on the role of NTAL in the high affinity immunoglobulin E receptor (FcεRI) signaling. Studies carried out on mast cells derived from mice with NTAL knock out (KO) and wild type mice suggested that NTAL is a negative regulator of FcεRI signaling, while experiments with RNAi-mediated NTAL knockdown (KD) in human mast cells and rat basophilic leukemia cells suggested its positive regulatory role. To determine whether different methodologies of NTAL ablation (KO vs KD) have different physiological consequences, we compared under well defined conditions FcεRI-mediated signaling events in mouse bone marrow-derived mast cells (BMMCs) with NTAL KO or KD. BMMCs with both NTAL KO and KD exhibited enhanced degranulation, calcium mobilization, chemotaxis, tyrosine phosphorylation of LAT and ERK, and depolymerization of filamentous actin. These data provide clear evidence that NTAL is a negative regulator of FcεRI activation events in murine BMMCs, independently of possible compensatory developmental alterations. To gain further insight into the role of NTAL in mast cells, we examined the transcriptome profiles of resting and antigen-activated NTAL KO, NTAL KD, and corresponding control BMMCs. Through this analysis we identified several genes that were differentially regulated in nonactivated and antigen-activated NTAL-deficient cells, when compared to the corresponding control cells. Some of the genes seem to be involved in regulation of cholesterol-dependent events in antigen-mediated chemotaxis. The combined data indicate multiple regulatory roles of NTAL in gene expression and mast cell physiology.
Zobrazit více v PubMed
Kinet JP (1999) The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu Rev Immunol 17: 931–972. PubMed
Eiseman E, Bolen JB (1992) Signal transduction by the cytoplasmic domains of FcεRI-γ and TCR-ζ in rat basophilic leukemia cells. J Biol Chem 267: 21027–21032. PubMed
Rivera J, Gilfillan AM (2006) Molecular regulation of mast cell activation. J Allergy Clin Immunol 117: 1214–1225. PubMed
Lindquist JA, Simeoni L, Schraven B (2003) Transmembrane adapters: attractants for cytoplasmic effectors. Immunol Rev 191: 165–182. PubMed
Horejsi V, Zhang W, Schraven B (2004) Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 4: 603–616. PubMed
Draber P, Halova I, Levi-Schaffer F, Draberova L (2012) Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Frontiers Immunol 2: 1–11. PubMed PMC
Brdička T, Imrich M, Angelisová P, Brdičková N, Horváth O, et al. (2002) Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J Exp Med 196: 1617–1626. PubMed PMC
Janssen E, Zhu M, Zhang W, Koonpaew S, Zhang W (2003) LAB: a new membrane-associated adaptor molecule in B cell activation. Nat Immunol 4: 117–123. PubMed
Volná P, Lebduška P, Dráberová L, Šímová S, Heneberg P, et al. (2004) Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J Exp Med 200: 1001–1013. PubMed PMC
Zhu M, Liu Y, Koonpaew S, Granillo O, Zhang W (2004) Positive and negative regulation of FcεRI-mediated signaling by adaptor protein LAB/NTAL. J Exp Med 200: 991–1000. PubMed PMC
Saitoh S, Arudchandran R, Manetz TS, Zhang W, Sommers CL, et al. (2000) LAT is essential for FcεRI-mediated mast cell activation. Immunity 12: 525–535. PubMed
Tkaczyk C, Horejsi V, Shoko I, Draber P, Samelson LE, et al. (2004) NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following kit activation and FcεRI aggregation. Blood 104: 207–214. PubMed
Dráberová L, Shaik GM, Volná P, Heneberg P, Tůmová M, et al. (2007) Regulation of Ca2+ signaling in mast cells by tyrosine-phosphorylated and unphosphorylated non-T cell activation linker. J Immunol 179: 5169–5180. PubMed
Surviladze Z, Dráberová L, Kovářová M, Boubelík M, Dráber P (2001) Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur J Immunol 31: 1–10. PubMed
Cham BE, Knowles BR (1976) A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res 17: 176–181. PubMed
Tolar P, Tůmová M, Dráber P (2001) New monoclonal antibodies recognizing the adaptor protein LAT. Folia Biol (Praha) 47: 215–217. PubMed
Hájková Z, Bugajev V, Dráberová E, Vinopal S, Dráberová L, et al. (2011) STIM1-directed reorganization of microtubules in activated mast cells. J Immunol 186: 913–923. PubMed
Tůmová M, Koffer A, Šimíček M, Dráberová L, Dráber P (2010) The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur J Immunol 40: 3235–3245. PubMed
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29: 365–371. PubMed
Horáková H, Polakovičová I, Shaik GM, Eitler J, Bugajev V, et al. (2011) 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol 11: 41. PubMed PMC
Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6: 218–230. PubMed
Nocka KH, Levine BA, Ko JL, Burch PM, Landgraf BE, et al. (1997) Increased growth promoting but not mast cell degranulation potential of a covalent dimer of c-Kit ligand. Blood 90: 3874–3883. PubMed
Paz PE, Wang S, Clarke H, Lu X, Stokoe D, et al. (2001) Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem J 356: 461–471. PubMed PMC
Zhu M, Janssen E, Zhang W (2003) Minimal requirement of tyrosine residues of linker for activation of T cells in TCR signaling and thymocyte development. J Immunol 170: 325–333. PubMed
Thompson HL, Thomas L, Metcalfe DD (1993) Murine mast cells attach to and migrate on laminin-, fibronectin-, and matrigel-coated surfaces in response to FcεRI-mediated signals. Clin Exp Allergy 23: 270–275. PubMed
Dastych J, Metcalfe DD (1994) Stem cell factor induces mast cell adhesion to fibronectin. J Immunol 152: 213–219. PubMed
Frigeri L, Apgar JR (1999) The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 cells. J Immunol 162: 2243–2250. PubMed
Pagler TA, Wang M, Mondal M, Murphy AJ, Westerterp M, et al. (2011) Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling. Circ Res 108: 194–200. PubMed PMC
Kovarova M, Wassif CA, Odom S, Liao K, Porter FD, et al. (2006) Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness. J Exp Med 203: 1161–1171. PubMed PMC
Sheets ED, Holowka D, Baird B (1999) Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J Cell Biol 145: 877–887. PubMed PMC
Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, et al. (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267: 1831–1834. PubMed
Thyagarajan T, Totey S, Danton MJ, Kulkarni AB (2003) Genetically altered mouse models: the good, the bad, and the ugly. Crit Rev Oral Biol Med 14: 154–174. PubMed
Fernandes AR, Easton AC, De Souza Silva MA, Schumann G, Muller CP, et al. (2012) Lentiviral-mediated gene delivery reveals distinct roles of nucleus accumbens dopamine D2 and D3 receptors in novelty- and light-induced locomotor activity. Eur J Neurosci 35: 1344–1353. PubMed
Wright J, Morales MM, Sousa-Menzes J, Ornellas D, Sipes J, et al. (2008) Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney. Physiol Genomics 33: 341–354. PubMed
Iwaki S, Spicka J, Tkaczyk C, Jensen BM, Furumoto Y, et al. (2008) Kit- and FcεRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal 20: 195–205. PubMed PMC
Orr SJ, McVicar DW (2011) LAB/NTAL/Lat2: a force to be reckoned with in all leukocytes? J Leukoc Biol 89: 11–19. PubMed PMC
Tolarová H, Dráberová L, Heneberg P, Dráber P (2004) Involvement of filamentous actin in setting the threshold for degranulation in mast cells. Eur J Immunol 34: 1627–1636. PubMed
Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, et al. (2009) P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J Immunol 183: 2801–2809. PubMed
Liu L, Das S, Losert W, Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 19: 845–857. PubMed PMC
Cavnar PJ, Berthier E, Beebe DJ, Huttenlocher A (2011) Hax1 regulates neutrophil adhesion and motility through RhoA. J Cell Biol 193: 465–473. PubMed PMC
Fan H, Hall P, Santos LL, Gregory JL, Fingerle-Rowson G, et al. (2011) Macrophage migration inhibitory factor and CD74 regulate macrophage chemotactic responses via MAPK and Rho GTPase. J Immunol 186: 4915–4924. PubMed PMC
Wang Z, Kumamoto Y, Wang P, Gan X, Lehmann D, Smrcka AV, et al. (2009) Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. J Biol Chem 284: 28599–28606. PubMed PMC
Ishizaki H, Togawa A, Tanaka-Okamoto M, Hori K, Nishimura M, et al. (2006) Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors α and β. J Immunol 177: 8512–8521. PubMed
Finkelman FD (2007) Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol 120: 506–515. PubMed
Dráberová L, Dráber P (1995) Aggregation of Thy-1 glycoprotein induces tyrosine phosphorylation of different proteins in isolated rat mast cells and rat basophilic leukemia cells. In: Mestecky J, McGhee J, Tláskalová H, Šterzl J, editors. Advances in Mucosal Immunology. New York, N.Y.: Plenum Press. pp. 297–301. PubMed
Bugajev V, Bambouskova M, Draberova L, Draber P (2010) What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett 584: 4949–4955. PubMed
Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, et al. (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270: 17250–17256. PubMed
Yancey PG, Rodrigueza WV, Kilsdonk EPC, Stoudt GW, Johnson WJ, Phillips MC, Rothblat GH, et al. (1996) Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J Biol Chem 271: 16026–16034. PubMed
Nguyen DH, Espinoza JC, Taub DD (2004) Cellular cholesterol enrichment impairs T cell activation and chemotaxis. Mech Ageing Dev 125: 641–650. PubMed
Murphy AJ, Woollard KJ, Hoang A, Mukhamedova N, Stirzaker RA, et al. (2008) High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Biol 28: 2071–2077. PubMed
Pierini LM, Eddy RJ, Fuortes M, Seveau S, Casulo C, et al. (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278: 10831–10841. PubMed
Signal transduction and chemotaxis in mast cells
New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling
GEO
GSE40731