Human Stem Cell-Derived GABAergic Interneurons Establish Efferent Synapses onto Host Neurons in Rat Epileptic Hippocampus and Inhibit Spontaneous Recurrent Seizures
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
722779
European Commission
2017-00921
Swedish Research Council
21-08-00533
Ministry of Health, Czech Republic
PubMed
34948040
PubMed Central
PMC8705828
DOI
10.3390/ijms222413243
PII: ijms222413243
Knihovny.cz E-resources
- Keywords
- GABA, cell integration, epilepsy, human embryonic stem cells, interneurons, optogenetics, synaptic integration,
- MeSH
- gamma-Aminobutyric Acid metabolism MeSH
- Hippocampus metabolism pathology MeSH
- Interneurons cytology metabolism MeSH
- Stem Cells cytology metabolism MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Kainic Acid adverse effects MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Recurrence MeSH
- Status Epilepticus chemically induced metabolism pathology therapy MeSH
- Stem Cell Transplantation methods MeSH
- Seizures chemically induced metabolism pathology therapy MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- gamma-Aminobutyric Acid MeSH
- Kainic Acid MeSH
Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.
Department of Physiology 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
Epilepsy Center Department of Clinical Sciences Lund University Hospital 221 84 Lund Sweden
See more in PubMed
Beghi E., Giussani G., Abd-Allah F., Abdela J., Abdelalim A., Abraha H.N., Adib M.G., Agrawal S., Alahdab F., Awasthi A., et al. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:357–375. doi: 10.1016/S1474-4422(18)30454-X. PubMed DOI PMC
Toda Y., Kobayashi K., Hayashi Y., Inoue T., Oka M., Ohtsuka Y. Effects of intravenous diazepam on high-frequency oscillations in EEGs with CSWS. Brain Dev. 2013;35:540–547. doi: 10.1016/j.braindev.2012.09.002. PubMed DOI
Peng B.-W., Justice J.A., Zhang K., Li J., He X., Sanchez R.M. Gabapentin promotes inhibition by enhancing hyperpolarization-activated cation currents and spontaneous firing in hippocampal CA1 interneurons. Neurosci. Lett. 2011;494:19–23. doi: 10.1016/j.neulet.2011.02.045. PubMed DOI
Braga M.F.M., Aroniadou-Anderjaska V., Li H., Rogawski M.A. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J. Pharmacol. Exp. Ther. 2009;330:558–566. doi: 10.1124/jpet.109.153908. PubMed DOI
Ylinen A., Valjakka A., Lahtinen H., Miettinen R., Freund T.F., Riekkinen P. Vigabatrin pre-treatment prevents hilar somatostatin cell loss and the development of interictal spiking activity following sustained simulation of the perforant path. Neuropeptides. 1991;19:205–211. doi: 10.1016/0143-4179(91)90120-8. PubMed DOI
O’Brien T.J., Ben-Menachem E., Bertram E.H., Collins S.D., Kokaia M., Lerche H., Klitgaard H., Staley K.J., Vaudano E., Walker M.C., et al. Proposal for a “phase II” multicenter trial model for preclinical new antiepilepsy therapy development. Epilepsia. 2013;54:70–74. doi: 10.1111/epi.12300. PubMed DOI
Chen B., Choi H., Hirsch L.J., Katz A., Legge A., Buchsbaum R., Detyniecki K. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2017;76:24–31. doi: 10.1016/j.yebeh.2017.08.039. PubMed DOI
Strine T.W., Kobau R., Chapman D.P., Thurman D.J., Price P., Balluz L.S. Psychological Distress, Comorbidities, and Health Behaviors among U.S. Adults with Seizures: Results from the 2002 National Health Interview Survey. Epilepsia. 2005;46:1133–1139. doi: 10.1111/j.1528-1167.2005.01605.x. PubMed DOI
Cramer J.A., Steinborn B., Striano P., Hlinkova L., Bergmann A., Bacos I., Baukens C., Buyle S. Non-interventional surveillance study of adverse events in patients with epilepsy. Acta Neurol. Scand. 2011;124:13–21. doi: 10.1111/j.1600-0404.2010.01440.x. PubMed DOI
Duncan J.S., Sander J.W., Sisodiya S.M., Walker M.C. Adult epilepsy. Lancet. 2006;367:1087–1100. doi: 10.1016/S0140-6736(06)68477-8. PubMed DOI
Engel J. Epilepsy in the world today: The medical point of view. Epilepsia. 2002;43:12–13. doi: 10.1046/j.1528-1157.43.s.6.6.x. PubMed DOI
Marcangelo M.J., Ovsiew F. Psychiatric Aspects of Epilepsy. Psychiatr. Clin. N. Am. 2007;30:781–802. doi: 10.1016/j.psc.2007.07.005. PubMed DOI
Engel J., McDermott M.P., Wiebe S., Langfitt J.T., Stern J.M., Dewar S., Sperling M.R., Gardiner I., Erba G., Fried I., et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: A randomized trial. JAMA J. Am. Med. Assoc. 2012;307:922–930. doi: 10.1001/jama.2012.220. PubMed DOI PMC
Yilmazer-Hanke D.M., Wolf H.K., Schramm J., Elger C.E., Wiestler O.D., Blümcke I. Subregional Pathology of the Amygdala Complex and Entorhinal Region in Surgical Specimens from Patients with Pharmacoresistant Temporal Lobe Epilepsy. J. Neuropathol. Exp. Neurol. 2000;59:907–920. doi: 10.1093/jnen/59.10.907. PubMed DOI
Ziburkus J., Cressman J.R., Barreto E., Schiff S.J. Interneuron and pyramidal cell interplay during in vitro seizure-like events. J. Neurophysiol. 2006;95:3948–3954. doi: 10.1152/jn.01378.2005. PubMed DOI PMC
Bausch S.B. Axonal sprouting of GABAergic interneurons in temporal lobe epilepsy. Epilepsy Behav. 2005;7:390–400. doi: 10.1016/j.yebeh.2005.07.019. PubMed DOI
Freund T.F., Buzsáki G. Interneurons of the hippocampus. Hippocampus. 1998;6:347–470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I. PubMed DOI
Liu Y.Q., Yu F., Liu W.H., He X.H., Peng B.W. Dysfunction of hippocampal interneurons in epilepsy. Neurosci. Bull. 2014;30:985–998. doi: 10.1007/s12264-014-1478-4. PubMed DOI PMC
Zhang W., Yamawaki R., Wen X., Uhl J., Diaz J., Prince D.A., Buckmaster P.S. Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J. Neurosci. 2009;29:14247–14256. doi: 10.1523/JNEUROSCI.3842-09.2009. PubMed DOI PMC
Sun C., Mtchedlishvili Z., Bertram E.H., Erisir A., Kapur J. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J. Comp. Neurol. 2007;500:876–893. doi: 10.1002/cne.21207. PubMed DOI PMC
Hunt R.F., Girskis K.M., Rubenstein J.L., Alvarez-Buylla A., Baraban S.C. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat. Neurosci. 2013;16:692–697. doi: 10.1038/nn.3392. PubMed DOI PMC
Waldau B., Hattiangady B., Kuruba R., Shetty A.K. Medial ganglionic eminence-derived neural stem cell grafts ease spontaneous seizures and restore GDNF expression in a rat model of chronic temporal lobe epilepsy. Stem Cells. 2010;28:1153–1164. doi: 10.1002/stem.446. PubMed DOI PMC
Casalia M.L., Howard M.A., Baraban S.C. Persistent seizure control in epileptic mice transplanted with gamma-aminobutyric acid progenitors. Ann. Neurol. 2017;82:530–542. doi: 10.1002/ana.25021. PubMed DOI PMC
Henderson K.W., Gupta J., Tagliatela S., Litvina E., Zheng X., Van Zandt M.A., Woods N., Grund E., Lin D., Royston S., et al. Long-Term Seizure Suppression and Optogenetic Analyses of Synaptic Connectivity in Epileptic Mice with Hippocampal Grafts of GABAergic Interneurons. J. Neurosci. 2014;34:13492–13504. doi: 10.1523/JNEUROSCI.0005-14.2014. PubMed DOI PMC
Baraban S.C., Southwell D.G., Estrada R.C., Jones D.L., Sebe J.Y., Alfaro-Cervello C., Garcia-Verdugo J.M., Rubenstein J.L.R., Alvarez-Buylla A. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc. Natl. Acad. Sci. USA. 2009;106:15472–15477. doi: 10.1073/pnas.0900141106. PubMed DOI PMC
Hattiangady B., Rao M.S., Shetty A.K. Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp. Neurol. 2008;212:468–481. doi: 10.1016/j.expneurol.2008.04.040. PubMed DOI PMC
Cunningham M., Cho J.-H., Leung A., Savvidis G., Ahn S., Moon M., Lee P.K.J., Han J.J., Azimi N., Kim K.-S., et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15:559–573. doi: 10.1016/j.stem.2014.10.006. PubMed DOI PMC
Upadhya D., Hattiangady B., Castro O.W., Shuai B., Kodali M., Attaluri S., Bates A., Dong Y., Zhang S.C., Prockop D.J., et al. Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc. Natl. Acad. Sci. USA. 2019;116:287–296. doi: 10.1073/pnas.1814185115. PubMed DOI PMC
Gonzalez-Ramos A., Waloschková E., Mikroulis A., Kokaia Z., Bengzon J., Ledri M., Andersson M., Kokaia M. Human stem cell-derived GABAergic neurons functionally integrate into human neuronal networks. Sci. Rep. 2021;11:1–16. doi: 10.1038/s41598-021-01270-x. PubMed DOI PMC
Yang N., Chanda S., Marro S., Ng Y.H., Janas J.A., Haag D., Ang C.E., Tang Y., Flores Q., Mall M., et al. Generation of pure GABAergic neurons by transcription factor programming. Nat. Methods. 2017;14:621–628. doi: 10.1038/nmeth.4291. PubMed DOI PMC
Allison T., Langerman J., Sabri S., Otero-Garcia M., Lund A., Huang J., Wei X., Samarasinghe R.A., Polioudakis D., Mody I., et al. Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis. Stem Cell Rep. 2021;16:2548–2564. doi: 10.1016/j.stemcr.2021.08.006. PubMed DOI PMC
Shrestha S., Anderson N.C., Grabel L.B., Naegele J.R., Aaron G.B. Development of electrophysiological and morphological properties of human embryonic stem cell-derived GABAergic interneurons at different times after transplantation into the mouse hippocampus. PLoS ONE. 2020;15:e0237426. doi: 10.1371/journal.pone.0237426. PubMed DOI PMC
Anderson N.C., Van Zandt M.A., Shrestha S., Lawrence D.B., Gupta J., Chen C.Y., Harrsch F.A., Boyi T., Dundes C.E., Aaron G., et al. Pluripotent stem cell-derived interneuron progenitors mature and restore memory deficits but do not suppress seizures in the epileptic mouse brain. Stem Cell Res. 2018;33:83–94. doi: 10.1016/j.scr.2018.10.007. PubMed DOI
Palma E., Amici M., Sobrero F., Spinelli G., Di Angelantonio S., Ragozzino D., Mascia A., Scoppetta C., Esposito V., Miledi R., et al. Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc. Natl. Acad. Sci. USA. 2006;103:8465–8468. doi: 10.1073/pnas.0602979103. PubMed DOI PMC
Huberfeld G., Wittner L., Clemenceau S., Baulac M., Kaila K., Miles R., Rivera C. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 2007;27:9866–9873. doi: 10.1523/JNEUROSCI.2761-07.2007. PubMed DOI PMC
Bregestovski P., Bernard C. Excitatory GABA: How a correct observation may turn out to be an experimental artifact. Front. Pharmacol. 2012;3:65. doi: 10.3389/fphar.2012.00065. PubMed DOI PMC
Maglóczky Z.S., Wittner L., Borhegyi Z.S., Halász P., Vajda J., Czirják S., Freund T.F. Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience. 2000;96:7–25. doi: 10.1016/S0306-4522(99)00474-1. PubMed DOI
Tóth K., Maglóczky Z. The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front. Neuroanat. 2014;8:100. doi: 10.3389/fnana.2014.00100. PubMed DOI PMC
Lentini C., D’Orange M., Marichal N., Trottmann M.-M., Vignoles R., Foucault L., Verrier C., Massera C., Raineteau O., Conzelmann K.-K., et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell. 2021;28:2104–2121.e10. doi: 10.1016/j.stem.2021.09.002. PubMed DOI PMC
Zhang F., Wang L.P., Brauner M., Liewald J.F., Kay K., Watzke N., Wood P.G., Bamberg E., Nagel G., Gottschalk A., et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–639. doi: 10.1038/nature05744. PubMed DOI
Lockowandt M., Günther D.M., Quintino L., Breger L.S., Isaksson C., Lundberg C. Optimization of production and transgene expression of a retrogradely transported pseudotyped lentiviral vector. J. Neurosci. Methods. 2020;336:108542. doi: 10.1016/j.jneumeth.2019.108542. PubMed DOI
Racine R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972;32:281–294. doi: 10.1016/0013-4694(72)90177-0. PubMed DOI
Nikitidou Ledri L., Melin E., Christiansen S.H., Gøtzsche C.R., Cifra A., Woldbye D.P.D., Kokaia M. Translational approach for gene therapy in epilepsy: Model system and unilateral overexpression of neuropeptide Y and Y2 receptors. Neurobiol. Dis. 2016;86:52–61. doi: 10.1016/j.nbd.2015.11.014. PubMed DOI
GitHub—AMikroulis/xPSC-Detection: Template Correlation-Based Detection of Postsynaptic Currents. [(accessed on 22 November 2021)]. Available online: https://github.com/AMikroulis/xPSC-detection.
Pistis M., Belelli D., Peters J.A., Lambert J.J. The interaction of general anaesthetics with recombinant GABA(A) and glycine receptors expressed in Xenopus laevis oocytes: A comparative study. Br. J. Pharmacol. 1997;122:1707–1719. doi: 10.1038/sj.bjp.0701563. PubMed DOI PMC
Das P., Bell-Horner C.L., Machu T.K., Dillon G.H. The GABAA receptor antagonist picrotoxin inhibits 5-hydroxytryptamine type 3A receptors. Neuropharmacology. 2003;44:431–438. doi: 10.1016/S0028-3908(03)00032-7. PubMed DOI
Das P., Dillon G.H. Molecular determinants of picrotoxin inhibition of 5-hydroxytryptamine type 3 receptors. J. Pharmacol. Exp. Ther. 2005;314:320–328. doi: 10.1124/jpet.104.080325. PubMed DOI