The interaction between titanium dioxide nanoparticles and light can have dualistic effects on the physiological responses of plants
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16.16.220.842
Akademia Górniczo-Hutnicza im. Stanislawa Staszica
CZ.02.1.01/0.0/0.0/16_026/0008446
European Regional Development Fund-Project "SINGING PLANT"
PubMed
38265580
DOI
10.1007/s11356-024-31970-6
PII: 10.1007/s11356-024-31970-6
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, High light, Joint stress factors, Light-induced thermal kinetics, Photosynthetic efficiency, Titanium dioxide nanoparticles,
- MeSH
- Arabidopsis * metabolismus MeSH
- chlorofyl metabolismus MeSH
- chloroplasty MeSH
- fotosyntéza fyziologie MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- nanočástice * MeSH
- světlo MeSH
- titan metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 μg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.
Department of Biophysics Jagiellonian University Medical College Św Łazarza 16 31 530 Kraków Poland
Photon Systems Instruments Průmyslova 470 664 24 Drásov Czech Republic
Zobrazit více v PubMed
Abbas Q, Yousaf B, Mujtaba Munir MA, Cheema AI, Hussain I, Rinklebe J (2021) Biochar-mediated transformation of titanium dioxide nanoparticles concerning TiO PubMed DOI
Aslam M, Abdullah AZ, Rafatullah M (2021) Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J Ind Eng Chem 98:1–16. https://doi.org/10.1016/j.jiec.2021.04.010 DOI
Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K, Upadhyay PK, Yadav DK, Singh VK (2022) Nanofertilizers for agricultural and environmental sustainability. Chemosphere 292. https://doi.org/10.1016/j.chemosphere.2021.133451
Bajons P, Klinger G, Schlosser V (2005) Determination of stomatal conductance by means of infrared thermography. Infrared Phys Technol 46(5):429–439. https://doi.org/10.1016/j.infrared.2004.09.001 DOI
Basahi M (2021) Seed germination with titanium dioxide nanoparticles enhances water supply, reserve mobilization, oxidative stress and antioxidant enzyme activities in pea. Saudi J Biol Sci 28(11):6500–6507. https://doi.org/10.1016/j.sjbs.2021.07.023 PubMed DOI PMC
Brewer A, Dror I, Berkowitz B (2021) The mobility of plastic nanoparticles in aqueous and soil environments: a critical review. Acs Es&t Water 1(1):48–57. https://doi.org/10.1021/acsestwater.0c00130 DOI
Brosche M, Merilo EBE, Mayer F, Pechter P, Puzorjova I, Brader G, Kangasjarvi J, Kollist H (2010) Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant Cell Environ 33(6):914–925. https://doi.org/10.1111/j.1365-3040.2010.02116.x PubMed DOI
Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in Photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta Bioenerg 1817(1):26–43. https://doi.org/10.1016/j.bbabio.2011.07.012 DOI
Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: a review of effects on microorganisms, plants and animals. Environ Pollut 253:578–598. https://doi.org/10.1016/j.envpol.2019.07.053 PubMed DOI
Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43(1):599–626. https://doi.org/10.1146/annurev.pp.43.060192.003123 DOI
Dias MC, Santos C, Pinto G, Silva AMS, Silva S (2019) Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. Protoplasma 256(1):69–78. https://doi.org/10.1007/s00709-018-1281-6 PubMed DOI
Du J, Xu SD, Zhou QW, Li HX, Fu L, Tang JH, Jin MQ (2019) The ecotoxicology of titanium dioxide nanoparticles, an important engineering nanomaterial. Toxicol Environ Chem 101(3–6):165–189. https://doi.org/10.1080/02772248.2019.1693572 DOI
Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL (2020) Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ 701:134816. https://doi.org/10.1016/j.scitotenv.2019.134816 PubMed DOI
Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO
Gao Y-B, Zheng W-W, Zhang C, Zhang L-I, Xu K (2019) High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Sci Hortic 248:132–137. https://doi.org/10.1016/j.scienta.2019.01.007 DOI
Ghazaei F, Shariati M (2020) Effects of titanium nanoparticles on the photosynthesis, respiration, and physiological parameters in Dunaliella salina and Dunaliella tertiolecta. Protoplasma 257(1):75–88. https://doi.org/10.1007/s00709-019-01420-z PubMed DOI
Haisel D, Cyrusová T, Vaněk T, Podlipná R (2019) The effect of nanoparticles on the photosynthetic pigments in cadmium-zinc interactions. Environ Sci Pollut Res 26(4):4147–4151. https://doi.org/10.1007/s11356-018-04060-7 DOI
Hermanowicz P, Sarna M, Burda K, Gabryś H (2014) AtomicJ: an open source software for analysis of force curves. Rev Sci Instrum 85(6):063703. https://doi.org/10.1063/1.4881683 PubMed DOI
Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275(6):1069–1079. https://doi.org/10.1111/j.1742-4658.2008.06263.x PubMed DOI
Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2019) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci 75:40–53. https://doi.org/10.1016/j.jes.2018.06.010 DOI
Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375. https://doi.org/10.3389/fpls.2020.00375 PubMed DOI PMC
Huang DY, Dang F, Huang YN, Chen N, Zhou DM (2022) Uptake, translocation, and transformation of silver nanoparticles in plants. Environ Science-Nano 9(1):12–39. https://doi.org/10.1039/d1en00870f DOI
Humayun M, Raziq F, Khan A, Luo W (2018) Modification strategies of TiO DOI
Hussain S, Iqbal N, Brestic M, Raza MA, Pang T, Langham DR, Safdar ME, Ahmed S, Wen BX, Gao Y, Liu WG, Yang WY (2019a) Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ 658:626–637. https://doi.org/10.1016/j.scitotenv.2018.12.182 PubMed DOI
Hussain S, Iqbal N, Raza MA, Khan MN, Ahmed S, Rahman T, Chen P, Wang X, Du X, Liu W, Yang W (2019b) Distribution and effects of ionic titanium application on energy partitioning and quantum yield of soybean under different light conditions. Photosynthetica 57(2):572–580. https://doi.org/10.32615/ps.2019.074 DOI
Jassal PS, Kaur D, Prasad R, Singh J (2022) Green synthesis of titanium dioxide nanoparticles: development and applications. J Agric Food Res 10. https://doi.org/10.1016/j.jafr.2022.100361
Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S (2022) Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: an up-to-date review. IET Nanobiotechnol 16(5):171–189. https://doi.org/10.1049/nbt2.12085 PubMed DOI PMC
Ji W, Hong E, Chen X, Li Z, Lin B, Xia X, Li T, Song X, Jin S, Zhu X (2022) Photosynthetic and physiological responses of different peony cultivars to high temperature. Front Plant Sci 13:969718. https://doi.org/10.3389/fpls.2022.969718 PubMed DOI PMC
John AK, Palaty S, Sharma SS (2020) Greener approach towards the synthesis of titanium dioxide nanostructures with exposed 001 facets for enhanced visible light photodegradation of organic pollutants. J Mater Sci: Mater Electron 31(23):20868–20882. https://doi.org/10.1007/s10854-020-04602-1 DOI
Kalaji HM, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B 112:1–6. https://doi.org/10.1016/j.jphotobiol.2012.03.009 PubMed DOI
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38(4):102. https://doi.org/10.1007/s11738-016-2113-y DOI
Kang HX, Zhu XG, Yamori W, Tang YH (2020) Concurrent increases in leaf temperature with light accelerate photosynthetic induction in tropical tree seedlings. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.01216 .
Koczurkiewicz P, Podolak I, Skrzeczyńska-Moncznik J, Sarna M, Wójcik KA, Ryszawy D, Galanty A, Lasota S, Madeja Z, Czyż J, Michalik M (2013) Triterpene saponosides from Lysimachia ciliata differentially attenuate invasive potential of prostate cancer cells. Chem Biol Interact 206(1):6–17. https://doi.org/10.1016/j.cbi.2013.08.003 PubMed DOI
Lawson T, Weyers J (1999) Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris L. primary leaves. J Exp Bot 50(337):1381–1391. https://doi.org/10.1093/jxb/50.337.1381 DOI
Leitão NS, Castilho E (2022) Heat transfer analysis of infrastructures subjected to environmental actions: a finite element solver PAT. Therm Sci Eng Prog 34:101447. https://doi.org/10.1016/j.tsep.2022.101447 DOI
Maai E, Nishimura K, Takisawa R, Nakazaki T (2020) Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. Plant Prod Sci 23(2):172–181. https://doi.org/10.1080/1343943X.2019.1673666 DOI
Machín A, Cotto M, Duconge J, Arango JC, Morant C, Pinilla S, Soto-Vázquez L, Resto E, Márquez F (2018) Hydrogen production via water splitting using different Au@ZnO catalysts under UV–vis irradiation. J Photochem Photobiol, A 353:385–394. https://doi.org/10.1016/j.jphotochem.2017.11.050 DOI
Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J (2001) Natural variation in light sensitivity of Arabidopsis. Nat Genet 29(4):441–446. https://doi.org/10.1038/ng777 PubMed DOI
Mathur S, Mehta P, Jajoo A (2013) Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiol Mol Biol Plants 19. https://doi.org/10.1007/s12298-012-0151-5
Mathur S, Jajoo A (2014) Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiol Mol Biol Plants 20(4):527–531. https://doi.org/10.1007/s12298-014-0249-z PubMed DOI PMC
Middepogu A, Hou J, Gao X, Lin D (2018) Effect and mechanism of TiO PubMed DOI
Mohammadi H, Mousavi Z, Hazrati S, Aghaee A, Bovand F, Brestic M (2023) Foliar applied titanium dioxide nanoparticles (TiO
Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976. https://doi.org/10.1016/j.envint.2006.06.014 PubMed DOI
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg 1767(6):414–421. https://doi.org/10.1016/j.bbabio.2006.11.019 DOI
Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Prenyllipid antioxidants participate in response to acute stress induced by heavy metals in green microalga Chlamydomonas reinhardtii. Environ Exp Bot 123:98–107. https://doi.org/10.1016/j.envexpbot.2015.11.008 DOI
Orzechowska A, Trtilek M, Tokarz K, Rozpadek P (2020) A study of light-induced stomatal response in Arabidopsis using thermal imaging. Biochem Biophys Res Commun 533(4):1129–1134. https://doi.org/10.1016/j.bbrc.2020.09.020 PubMed DOI
Orzechowska A, Fiedor J, Kulakowski P (2021a) Light energy driven nanocommunications with FRET in photosynthetic systems. IEEE Access 9:44490–44501. https://doi.org/10.1109/ACCESS.2021.3066306 DOI
Orzechowska A, Trtilek M, Niewiadomska E (2021b) Thermographic study of plant response to excessive light. Acta Phys Pol A 139(3):257–260. https://doi.org/10.12693/APhysPolA.139.257 DOI
Orzechowska A, Czaderna-Lekka A, Trtílek M, Rusiniak P (2023) Fluorescence analysis of biocide efficiency in antifouling coatings against cyanobacteria. Int J Mol Sci 24(5):4972. https://doi.org/10.3390/ijms24054972 PubMed DOI PMC
Orzechowska A, Trtilek M, Tokarz KM, Szymanska R, Niewiadomska E, Rozpądek P, Wątor K (2021c) Thermal analysis of stomatal response under salinity and high light. Int J Mol Sci 22(9). https://doi.org/10.3390/ijms22094663 .
Paradiso R, Proietti S (2022) Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED systems. J Plant Growth Regul 41(2):742–780. https://doi.org/10.1007/s00344-021-10337-y DOI
Prajitha N, Athira SS, Mohanan PV (2019) Bio-interactions and risks of engineered nanoparticles. Environ Res 172:98–108. https://doi.org/10.1016/j.envres.2019.02.003 PubMed DOI
Rahmawati T, Butburee T, Sangkhun W, Wutikhun T, Padchasri J, Kidkhunthod P, Phromma S, Eksangsri T, Kangwansupamonkon W, Leeladee P, Sapcharoenkun C (2023) Green synthesis of Ag-TiO
Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594. https://doi.org/10.1039/c5mt00168d PubMed DOI
Ramachandran P, Lee CY, Doong RA, Oon CE, Thanh NTK, Lee HL (2020) A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Adv 10(37):21795–21805. https://doi.org/10.1039/d0ra02907f PubMed DOI PMC
Rapacz M, Sasal M, Kalaji HM, Kościelniak J (2015) Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PLoS One 10(7):e0134820. https://doi.org/10.1371/journal.pone.0134820 PubMed DOI PMC
Rezaizad M, Hashemi-Moghaddam H, Abbaspour H, Gerami M, Mueller A (2019) Photocatalytic effect of TiO DOI
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. https://doi.org/10.1021/jf104517j PubMed DOI PMC
Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170(4):1903–1916. https://doi.org/10.1104/pp.15.01935 PubMed DOI PMC
Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22(6):4122–4143. https://doi.org/10.1007/s11356-014-3994-1 DOI
Sarna M, Olchawa M, Zadlo A, Wnuk D, Sarna T (2017) The nanomechanical role of melanin granules in the retinal pigment epithelium. Nanomedicine 13(3):801–807. https://doi.org/10.1016/j.nano.2016.11.020 PubMed DOI
Shahadat M, Teng TT, Rafatullah M, Arshad M (2015) Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf B Biointerfaces 126:121–137. https://doi.org/10.1016/j.colsurfb.2014.11.049 PubMed DOI
Sousa VS, Teixeira MR (2020) Metal-based engineered nanoparticles in the drinking water treatment systems: a critical review. Sci Total Environ 707. https://doi.org/10.1016/j.scitotenv.2019.136077
Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104(1):236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010 PubMed DOI
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer Netherlands, Dordrecht, pp 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12 DOI
Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. CRP Press, London, pp 445–483. https://doi.org/10.1201/9781482268010
Szekely V, Rencz M (2000) Thermal dynamics and the time constant domain. IEEE Trans Compon Packaging Technol 23(3):587–594. https://doi.org/10.1109/6144.868862 DOI
Szymanska R, Kolodziej K, Slesak I, Zimak-Piekarczyk P, Orzechowska A, Gabruk M, Zadlo A, Habina I, Knap W, Burda K, Kruk J (2016) Titanium dioxide nanoparticles (100–1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environ Pollut 213:957–965. https://doi.org/10.1016/j.envpol.2016.03.026 PubMed DOI
Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs -a critical review. Environ Sci Nano 5(2):257–278. https://doi.org/10.1039/C7EN00985B DOI
Taylor MA, Cooper MD, Schmitt J (2019) Phenological and fitness responses to climate warming depend upon genotype and competitive neighbourhood in Arabidopsis thaliana. Funct Ecol 33(2):308–322. https://doi.org/10.1111/1365-2435.13262 DOI
Trela-Makowej A, Orzechowska A, Szymańska R (2024) Less is more: the hormetic effect of titanium dioxide nanoparticles on plants. Sci Total Environ 910:168669. https://doi.org/10.1016/j.scitotenv.2023.168669 PubMed DOI
Vatankhah A, Aliniaeifard S, Moosavi-Nezhad M, Abdi S, Mokhtarpour Z, Reezi S, Tsaniklidis G, Fanourakis D (2023) Plants exposed to titanium dioxide nanoparticles acquired contrasting photosynthetic and morphological strategies depending on the growing light intensity: a case study in radish. Sci Rep 13(1):5873. https://doi.org/10.1038/s41598-023-32466-y PubMed DOI PMC
Vialet-Chabrand S, Lawson T (2019) Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. J Exp Bot 70(10):2839–2855. https://doi.org/10.1093/jxb/erz068 PubMed DOI PMC
Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN (2019) Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. Sn Appl Sci 1(4). https://doi.org/10.1007/s42452-019-0337-3
Wang XR, Xie HG, Wang P, Yin H (2023) Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials 16(8). https://doi.org/10.3390/ma16083097
Wiktor A, Sarna M, Wnuk D, Sarna T (2018) Lipofuscin-mediated photodynamic stress induces adverse changes in nanomechanical properties of retinal pigment epithelium cells. Sci Rep 8(1):17929. https://doi.org/10.1038/s41598-018-36322-2 PubMed DOI PMC
Xia T, Zhang Y, Murowchick J, Chen X (2014) Vacuum-treated titanium dioxide nanocrystals: optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catal Today 225:2–9. https://doi.org/10.1016/j.cattod.2013.08.026 DOI
Yang XQ, Zhang QS, Zhang D, Sheng ZT (2017) Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.). Plant Physiol Biochem 113:168–176. https://doi.org/10.1016/j.plaphy.2017.02.011 PubMed DOI
Zadlo A, Szewczyk G, Sarna M, Kozinska A, Pilat A, Kaczara P, Sarna T (2016) Photoaging of retinal pigment epithelial melanosomes: the effect of photobleaching on morphology and reactivity of the pigment granules. Free Radic Biol Med 97:320–329. https://doi.org/10.1016/j.freeradbiomed.2016.06.012 PubMed DOI
Zadlo A, Pilat A, Sarna M, Pawlak A, Sarna T (2017) Redox active transition metal ions make melanin susceptible to chemical degradation induced by organic peroxide. Cell Biochem Biophys 75(3–4):319–333. https://doi.org/10.1007/s12013-017-0793-6 PubMed DOI PMC
Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO PubMed DOI
Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L (2020) Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials 10(2). https://doi.org/10.3390/nano10020387
Zsiros O, Nagy G, Patai R, Solymosi K, Gasser U, Polgár TF, Garab G, Kovács L, Hörcsik ZT (2020) Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.01006