Hydration of biologically relevant tetramethylammonium cation by neutron scattering and molecular dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38193286
PubMed Central
PMC10806622
DOI
10.1039/d3cp05449g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Neutron scattering and molecular dynamics studies were performed on a concentrated aqueous tetramethylammonium (TMA) chloride solution to gain insight into the hydration shell structure of TMA, which is relevant for understanding its behavior in biological contexts of, e.g., properties of phospholipid membrane headgroups or interactions between DNA and histones. Specifically, neutron diffraction with isotopic substitution experiments were performed on TMA and water hydrogens to extract the specific correlation between hydrogens in TMA (HTMA) and hydrogens in water (HW). Classical molecular dynamics simulations were performed to help interpret the experimental neutron scattering data. Comparison of the hydration structure and simulated neutron signals obtained with various force field flavors (e.g. overall charge, charge distribution, polarity of the CH bonds and geometry) allowed us to gain insight into how sensitive the TMA hydration structure is to such changes and how much the neutron signal can capture them. We show that certain aspects of the hydration, such as the correlation of the hydrogen on TMA to hydrogen on water, showed little dependence on the force field. In contrast, other correlations, such as the ion-ion interactions, showed more marked changes. Strikingly, the neutron scattering signal cannot discriminate between different hydration patterns. Finally, ab initio molecular dynamics was used to examine the three-dimensional hydration structure and thus to benchmark force field simulations. Overall, while neutron scattering has been previously successfully used to improve force fields, in the particular case of TMA we show that it has only limited value to fully determine the hydration structure, with other techniques such as ab initio MD being of a significant help.
Zobrazit více v PubMed
Cheung P. Lau P. Mol. Endocrinol. 2005;19:563–573. doi: 10.1210/me.2004-0496. PubMed DOI
von Hippel P. H. Wong K.-Y. J. Biol. Chem. 1965;240:3909–3923. doi: 10.1016/S0021-9258(18)97128-0. PubMed DOI
Brändström A. Adv. Phys. Org. Chem. 1977:267–330. doi: 10.1016/S0065-3160(08)60120-3. DOI
Mustain A. Gupta B. S. Taha M. Lee M.-J. New J. Chem. 2023;47:12304–12313. doi: 10.1039/D3NJ00146F. DOI
Turner J. Soper A. K. Finney J. L. Mol. Phys. 1990;70:679–700. doi: 10.1080/00268979000102661. DOI
Polydorou N. G. Wicks J. D. Turner J. Z. J. Chem. Phys. 1997;107:197–204. doi: 10.1063/1.474365. DOI
Lang E. W. Bradl S. Fink W. Radkowitsch H. Girlich D. J. Phys.: Condens. Matter. 1990;2:SA195–SA200. doi: 10.1088/0953-8984/2/S/028. DOI
Bhowmik D. Malikova N. Mériguet G. Bernard O. Teixeira J. Turq P. Phys. Chem. Chem. Phys. 2014;16:13447–13457. doi: 10.1039/C4CP01164C. PubMed DOI
Turner J. Soper A. Finney J. Mol. Phys. 1992;77:411–429. doi: 10.1080/00268979200102521. DOI
Turner J. Z. Soper A. K. Finney J. L. J. Chem. Phys. 1995;102:5438–5443. doi: 10.1063/1.469271. DOI
Nilsson E. J. Alfredsson V. Bowron D. T. Edler K. J. Phys. Chem. Chem. Phys. 2016;18:11193–11201. doi: 10.1039/C6CP01389A. PubMed DOI
Jong P. H. K. D. Neilson G. W. J. Phys.: Condens. Matter. 1996;8:9275–9279. doi: 10.1088/0953-8984/8/47/015. DOI
Mason P. E. Neilson G. W. Dempsey C. E. Brady J. W. J. Am. Chem. Soc. 2006;128:15136–15144. doi: 10.1021/ja0613207. PubMed DOI
Mason P. E. Ansell S. Neilson G. W. J. Phys.: Condens. Matter. 2006;18:8437–8447. doi: 10.1088/0953-8984/18/37/004. PubMed DOI
Neilson G. W. Mason P. E. Ramos S. Sullivan D. Philos. Trans. R. Soc., A. 2001;359:1575–1591. doi: 10.1098/rsta.2001.0866. DOI
Turner J. Soper A. K. J. Chem. Phys. 1994;101:6116–6125. doi: 10.1063/1.467327. DOI
Pluhařová E. Fischer H. E. Mason P. E. Jungwirth P. Mol. Phys. 2014;112:1230–1240. doi: 10.1080/00268976.2013.875231. DOI
Martinek T. Duboué-Dijon E. Timr Š. Mason P. E. Baxová K. Fischer H. E. Schmidt B. Pluhařová E. Jungwirth P. J. Chem. Phys. 2018;148:222813. doi: 10.1063/1.5006779. PubMed DOI
Fischer H. E. Cuello G. J. Palleau P. Feltin D. Barnes A. C. Badyal Y. S. Simonson J. M. Appl. Phys. A: Mater. Sci. Process. 2002;74:s160–s162. doi: 10.1007/s003390101087. DOI
Mason P. E., Fischer H. E., Jungwirth P. and Timr S., Towards a fuller understanding of protein lipid interactions, Institut Laue-Langevin (ILL) 201510.5291/ILL-DATA.8-03-844 DOI
Herdmants G. J. Neilsont G. W. J. Phys.: Condens. Matter. 1996;4:627–638. doi: 10.1088/0953-8984/4/3/004. DOI
Enderby J. E. Williams D. E. Randall J. Proc. R. Soc. London, Ser. A. 1975;345:107–117.
Mason P. E. Neilson G. W. Dempsey C. E. Brady J. W. J. Am. Chem. Soc. 2006;128:15136–15144. doi: 10.1021/ja0613207. PubMed DOI
Chandrasekhar J. Spellmeyer D. C. Jorgensen W. L. J. Am. Chem. Soc. 1984;106:903–910. doi: 10.1021/ja00316a012. DOI
MacKerell A. D. Bashford D. Bellott M. Dunbrack R. L. Evanseck J. D. Field M. J. Fischer S. Gao J. Guo H. Ha S. Joseph-McCarthy D. Kuchnir L. Kuczera K. Lau F. T. K. Mattos C. Michnick S. Ngo T. Nguyen D. T. Prodhom B. Reiher W. E. Roux B. Schlenkrich M. Smith J. C. Stote R. Straub J. Watanabe M. Wiórkiewicz-Kuczera J. Yin D. Karplus M. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI
Abraham M. J. Murtola T. Schulz R. Páll S. Smith J. C. Hess B. Lindah E. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Leontyev I. Stuchebrukhov A. Phys. Chem. Chem. Phys. 2011;13:2613. doi: 10.1039/C0CP01971B. PubMed DOI
Duboué-Dijon E. Javanainen M. Delcroix P. Jungwirth P. Martinez-Seara H. J. Chem. Phys. 2020;153:050901. doi: 10.1063/5.0017775. PubMed DOI
Kostal V. Mason P. E. Martinez-Seara H. Jungwirth P. J. Phys. Chem. Lett. 2023:4403–4408. doi: 10.1021/acs.jpclett.3c00856. PubMed DOI PMC
Bennun S. V. Hoopes M. I. Xing C. Faller R. Chem. Phys. Lipids. 2009;159:59–66. doi: 10.1016/j.chemphyslip.2009.03.003. PubMed DOI
Klauda J. B. Venable R. M. Freites J. A. O'Connor J. W. Tobias D. J. Mondragon-Ramirez C. Vorobyov I. MacKerell A. D. Pastor R. W. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
Lee J. Cheng X. Swails J. M. Yeom M. S. Eastman P. K. Lemkul J. A. Wei S. Buckner J. Jeong J. C. Qi Y. Jo S. Pande V. S. Case D. A. Brooks C. L. MacKerell A. D. Klauda J. B. Im W. J. Chem. Theory Comput. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Hess B. Bekker H. Berendsen H. J. C. Fraaije J. G. E. M. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S. Kollman P. A. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Tribello G. A. Bonomi M. Branduardi D. Camilloni C. Bussi G. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Nosé S. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Parrinello M. Rahman A. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Páll S. Hess B. Comput. Phys. Commun. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Zhang Y. Yang W. Phys. Rev. Lett. 1998;80:890. doi: 10.1103/PhysRevLett.80.890. DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1998;80:891. doi: 10.1103/PhysRevLett.80.891. PubMed DOI
Grimme S. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Goedecker S. Teter M. Hutter J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:1703–1710. doi: 10.1103/PhysRevB.54.1703. PubMed DOI
Krack M. Theor. Chem. Acc. 2005;114:145–152.
VandeVondele J. Hutter J. J. Chem. Phys. 2007;127:114105. doi: 10.1063/1.2770708. PubMed DOI
Lippert G. Hutter J. Parrinello M. Mol. Phys. 1997;92:477–488. doi: 10.1080/00268979709482119. DOI
Gunsteren W. F. V. Berendsen H. J. C. Mol. Phys. 1982;45:637–647. doi: 10.1080/00268978200100491. DOI
Bussi G. Donadio D. Parrinello M. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Hutter J. Iannuzzi M. Schiffmann F. Vandevondele J. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014;4:15–25.
Kühne T. D. Iannuzzi M. Ben M. D. Rybkin V. V. Seewald P. Stein F. Laino T. Khaliullin R. Z. Schütt O. Schiffmann F. Golze D. Wilhelm J. Chulkov S. Bani-Hashemian M. H. Weber V. Borštnik U. Taillefumier M. Jakobovits A. S. Lazzaro A. Pabst H. Müller T. Schade R. Guidon M. Andermatt S. Holmberg N. Schenter G. K. Hehn A. Bussy A. Belleflamme F. Tabacchi G. Glöβ A. Lass M. Bethune I. Mundy C. J. Plessl C. Watkins M. VandeVondele J. Krack M. Hutter J. J. Chem. Phys. 2020;152:194103. doi: 10.1063/5.0007045. PubMed DOI
VandeVondele J. Krack M. Mohamed F. Parrinello M. Chassaing T. Hutter J. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI
Nguyen M. T. H. Tichacek O. Martinez-Seara H. Mason P. E. Jungwirth P. J. Phys. Chem. B. 2021;125:3153–3162. doi: 10.1021/acs.jpcb.0c10599. PubMed DOI
Nencini R. Tempra C. Biriukov D. Polák J. Ondo D. Heyda J. Ollila S. O. Javanainen M. Martinez-Seara H. Biophys. J. 2022;121:157a. doi: 10.1016/j.bpj.2021.11.1935. PubMed DOI
Pluhařová E. Mason P. E. Jungwirth P. J. Phys. Chem. A. 2013;117:11766–11773. doi: 10.1021/jp402532e. PubMed DOI
Kohagen M. Mason P. E. Jungwirth P. J. Phys. Chem. B. 2014;118:7902–7909. doi: 10.1021/jp5005693. PubMed DOI