Hydration of biologically relevant tetramethylammonium cation by neutron scattering and molecular dynamics

. 2024 Jan 24 ; 26 (4) : 3208-3218. [epub] 20240124

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38193286

Neutron scattering and molecular dynamics studies were performed on a concentrated aqueous tetramethylammonium (TMA) chloride solution to gain insight into the hydration shell structure of TMA, which is relevant for understanding its behavior in biological contexts of, e.g., properties of phospholipid membrane headgroups or interactions between DNA and histones. Specifically, neutron diffraction with isotopic substitution experiments were performed on TMA and water hydrogens to extract the specific correlation between hydrogens in TMA (HTMA) and hydrogens in water (HW). Classical molecular dynamics simulations were performed to help interpret the experimental neutron scattering data. Comparison of the hydration structure and simulated neutron signals obtained with various force field flavors (e.g. overall charge, charge distribution, polarity of the CH bonds and geometry) allowed us to gain insight into how sensitive the TMA hydration structure is to such changes and how much the neutron signal can capture them. We show that certain aspects of the hydration, such as the correlation of the hydrogen on TMA to hydrogen on water, showed little dependence on the force field. In contrast, other correlations, such as the ion-ion interactions, showed more marked changes. Strikingly, the neutron scattering signal cannot discriminate between different hydration patterns. Finally, ab initio molecular dynamics was used to examine the three-dimensional hydration structure and thus to benchmark force field simulations. Overall, while neutron scattering has been previously successfully used to improve force fields, in the particular case of TMA we show that it has only limited value to fully determine the hydration structure, with other techniques such as ab initio MD being of a significant help.

Zobrazit více v PubMed

Cheung P. Lau P. Mol. Endocrinol. 2005;19:563–573. doi: 10.1210/me.2004-0496. PubMed DOI

von Hippel P. H. Wong K.-Y. J. Biol. Chem. 1965;240:3909–3923. doi: 10.1016/S0021-9258(18)97128-0. PubMed DOI

Brändström A. Adv. Phys. Org. Chem. 1977:267–330. doi: 10.1016/S0065-3160(08)60120-3. DOI

Mustain A. Gupta B. S. Taha M. Lee M.-J. New J. Chem. 2023;47:12304–12313. doi: 10.1039/D3NJ00146F. DOI

Turner J. Soper A. K. Finney J. L. Mol. Phys. 1990;70:679–700. doi: 10.1080/00268979000102661. DOI

Polydorou N. G. Wicks J. D. Turner J. Z. J. Chem. Phys. 1997;107:197–204. doi: 10.1063/1.474365. DOI

Lang E. W. Bradl S. Fink W. Radkowitsch H. Girlich D. J. Phys.: Condens. Matter. 1990;2:SA195–SA200. doi: 10.1088/0953-8984/2/S/028. DOI

Bhowmik D. Malikova N. Mériguet G. Bernard O. Teixeira J. Turq P. Phys. Chem. Chem. Phys. 2014;16:13447–13457. doi: 10.1039/C4CP01164C. PubMed DOI

Turner J. Soper A. Finney J. Mol. Phys. 1992;77:411–429. doi: 10.1080/00268979200102521. DOI

Turner J. Z. Soper A. K. Finney J. L. J. Chem. Phys. 1995;102:5438–5443. doi: 10.1063/1.469271. DOI

Nilsson E. J. Alfredsson V. Bowron D. T. Edler K. J. Phys. Chem. Chem. Phys. 2016;18:11193–11201. doi: 10.1039/C6CP01389A. PubMed DOI

Jong P. H. K. D. Neilson G. W. J. Phys.: Condens. Matter. 1996;8:9275–9279. doi: 10.1088/0953-8984/8/47/015. DOI

Mason P. E. Neilson G. W. Dempsey C. E. Brady J. W. J. Am. Chem. Soc. 2006;128:15136–15144. doi: 10.1021/ja0613207. PubMed DOI

Mason P. E. Ansell S. Neilson G. W. J. Phys.: Condens. Matter. 2006;18:8437–8447. doi: 10.1088/0953-8984/18/37/004. PubMed DOI

Neilson G. W. Mason P. E. Ramos S. Sullivan D. Philos. Trans. R. Soc., A. 2001;359:1575–1591. doi: 10.1098/rsta.2001.0866. DOI

Turner J. Soper A. K. J. Chem. Phys. 1994;101:6116–6125. doi: 10.1063/1.467327. DOI

Pluhařová E. Fischer H. E. Mason P. E. Jungwirth P. Mol. Phys. 2014;112:1230–1240. doi: 10.1080/00268976.2013.875231. DOI

Martinek T. Duboué-Dijon E. Timr Š. Mason P. E. Baxová K. Fischer H. E. Schmidt B. Pluhařová E. Jungwirth P. J. Chem. Phys. 2018;148:222813. doi: 10.1063/1.5006779. PubMed DOI

Fischer H. E. Cuello G. J. Palleau P. Feltin D. Barnes A. C. Badyal Y. S. Simonson J. M. Appl. Phys. A: Mater. Sci. Process. 2002;74:s160–s162. doi: 10.1007/s003390101087. DOI

Mason P. E., Fischer H. E., Jungwirth P. and Timr S., Towards a fuller understanding of protein lipid interactions, Institut Laue-Langevin (ILL) 201510.5291/ILL-DATA.8-03-844 DOI

Herdmants G. J. Neilsont G. W. J. Phys.: Condens. Matter. 1996;4:627–638. doi: 10.1088/0953-8984/4/3/004. DOI

Enderby J. E. Williams D. E. Randall J. Proc. R. Soc. London, Ser. A. 1975;345:107–117.

Mason P. E. Neilson G. W. Dempsey C. E. Brady J. W. J. Am. Chem. Soc. 2006;128:15136–15144. doi: 10.1021/ja0613207. PubMed DOI

Chandrasekhar J. Spellmeyer D. C. Jorgensen W. L. J. Am. Chem. Soc. 1984;106:903–910. doi: 10.1021/ja00316a012. DOI

MacKerell A. D. Bashford D. Bellott M. Dunbrack R. L. Evanseck J. D. Field M. J. Fischer S. Gao J. Guo H. Ha S. Joseph-McCarthy D. Kuchnir L. Kuczera K. Lau F. T. K. Mattos C. Michnick S. Ngo T. Nguyen D. T. Prodhom B. Reiher W. E. Roux B. Schlenkrich M. Smith J. C. Stote R. Straub J. Watanabe M. Wiórkiewicz-Kuczera J. Yin D. Karplus M. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI

Abraham M. J. Murtola T. Schulz R. Páll S. Smith J. C. Hess B. Lindah E. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Leontyev I. Stuchebrukhov A. Phys. Chem. Chem. Phys. 2011;13:2613. doi: 10.1039/C0CP01971B. PubMed DOI

Duboué-Dijon E. Javanainen M. Delcroix P. Jungwirth P. Martinez-Seara H. J. Chem. Phys. 2020;153:050901. doi: 10.1063/5.0017775. PubMed DOI

Kostal V. Mason P. E. Martinez-Seara H. Jungwirth P. J. Phys. Chem. Lett. 2023:4403–4408. doi: 10.1021/acs.jpclett.3c00856. PubMed DOI PMC

Bennun S. V. Hoopes M. I. Xing C. Faller R. Chem. Phys. Lipids. 2009;159:59–66. doi: 10.1016/j.chemphyslip.2009.03.003. PubMed DOI

Klauda J. B. Venable R. M. Freites J. A. O'Connor J. W. Tobias D. J. Mondragon-Ramirez C. Vorobyov I. MacKerell A. D. Pastor R. W. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Lee J. Cheng X. Swails J. M. Yeom M. S. Eastman P. K. Lemkul J. A. Wei S. Buckner J. Jeong J. C. Qi Y. Jo S. Pande V. S. Case D. A. Brooks C. L. MacKerell A. D. Klauda J. B. Im W. J. Chem. Theory Comput. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Hess B. Bekker H. Berendsen H. J. C. Fraaije J. G. E. M. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S. Kollman P. A. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Tribello G. A. Bonomi M. Branduardi D. Camilloni C. Bussi G. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI

Nosé S. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Parrinello M. Rahman A. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Páll S. Hess B. Comput. Phys. Commun. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Zhang Y. Yang W. Phys. Rev. Lett. 1998;80:890. doi: 10.1103/PhysRevLett.80.890. DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1998;80:891. doi: 10.1103/PhysRevLett.80.891. PubMed DOI

Grimme S. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Goedecker S. Teter M. Hutter J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:1703–1710. doi: 10.1103/PhysRevB.54.1703. PubMed DOI

Krack M. Theor. Chem. Acc. 2005;114:145–152.

VandeVondele J. Hutter J. J. Chem. Phys. 2007;127:114105. doi: 10.1063/1.2770708. PubMed DOI

Lippert G. Hutter J. Parrinello M. Mol. Phys. 1997;92:477–488. doi: 10.1080/00268979709482119. DOI

Gunsteren W. F. V. Berendsen H. J. C. Mol. Phys. 1982;45:637–647. doi: 10.1080/00268978200100491. DOI

Bussi G. Donadio D. Parrinello M. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Hutter J. Iannuzzi M. Schiffmann F. Vandevondele J. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014;4:15–25.

Kühne T. D. Iannuzzi M. Ben M. D. Rybkin V. V. Seewald P. Stein F. Laino T. Khaliullin R. Z. Schütt O. Schiffmann F. Golze D. Wilhelm J. Chulkov S. Bani-Hashemian M. H. Weber V. Borštnik U. Taillefumier M. Jakobovits A. S. Lazzaro A. Pabst H. Müller T. Schade R. Guidon M. Andermatt S. Holmberg N. Schenter G. K. Hehn A. Bussy A. Belleflamme F. Tabacchi G. Glöβ A. Lass M. Bethune I. Mundy C. J. Plessl C. Watkins M. VandeVondele J. Krack M. Hutter J. J. Chem. Phys. 2020;152:194103. doi: 10.1063/5.0007045. PubMed DOI

VandeVondele J. Krack M. Mohamed F. Parrinello M. Chassaing T. Hutter J. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI

Nguyen M. T. H. Tichacek O. Martinez-Seara H. Mason P. E. Jungwirth P. J. Phys. Chem. B. 2021;125:3153–3162. doi: 10.1021/acs.jpcb.0c10599. PubMed DOI

Nencini R. Tempra C. Biriukov D. Polák J. Ondo D. Heyda J. Ollila S. O. Javanainen M. Martinez-Seara H. Biophys. J. 2022;121:157a. doi: 10.1016/j.bpj.2021.11.1935. PubMed DOI

Pluhařová E. Mason P. E. Jungwirth P. J. Phys. Chem. A. 2013;117:11766–11773. doi: 10.1021/jp402532e. PubMed DOI

Kohagen M. Mason P. E. Jungwirth P. J. Phys. Chem. B. 2014;118:7902–7909. doi: 10.1021/jp5005693. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...