Common Cations Are Not Polarizable: Effects of Dispersion Correction on Hydration Structures from Ab Initio Molecular Dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37140439
PubMed Central
PMC10201575
DOI
10.1021/acs.jpclett.3c00856
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We employed density functional theory-based ab initio molecular dynamics simulations to examine the hydration structure of several common alkali and alkali earth metal cations. We found that the commonly used atom pairwise dispersion correction scheme D3, which assigns dispersion coefficients based on the neutral form of the atom rather than its actual oxidation state, leads to inaccuracies in the hydration structures of these cations. We evaluated this effect for lithium, sodium, potassium, and calcium and found that the inaccuracies are particularly pronounced for sodium and potassium compared to the experiment. To remedy this issue, we propose disabling the D3 correction specifically for all cation-including pairs, which leads to a much better agreement with experimental data.
Zobrazit více v PubMed
Schmidt J.; Vandevondele J.; Kuo I. F. W.; Sebastiani D.; Siepmann J. I.; Hutter J.; Mundy C. J. Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: An assessment of the structure and density of water at near-ambient conditions. J. Phys. Chem. B 2009, 113, 11959–11964. 10.1021/jp901990u. PubMed DOI
Lin I. C.; Seitsonen A. P.; Tavernelli I.; Rothlisberger U. Structure and dynamics of liquid water from ab initio molecular dynamics-comparison of BLYP, PBE, and revPBE density functionals with and without van der Waals corrections. J. Chem. Theory Comput. 2012, 8, 3902–3910. 10.1021/ct3001848. PubMed DOI
Gillan M. J.; Alfè D.; Michaelides A. Perspective: How good is DFT for water?. J. Chem. Phys. 2016, 144, 130901.10.1063/1.4944633. PubMed DOI
Yoo S.; Xantheas S. S. Communication: The effect of dispersion corrections on the melting temperature of liquid water. J. Chem. Phys. 2011, 134, 121105.10.1063/1.3573375. PubMed DOI
Morawietz T.; Singraber A.; Dellago C.; Behler J. How van der waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 8368–8373. 10.1073/pnas.1602375113. PubMed DOI PMC
Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463–1473. 10.1002/jcc.20078. PubMed DOI
Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Ekstrom C. R.; Schmiedmayer J.; Chapman M. S.; Hammond T. D.; Pritchard D. E. Measurement of the electric polarizability of sodium with an atom interferometer. Phys. Rev. A 1995, 51, 3883–3888. 10.1103/PhysRevA.51.3883. PubMed DOI
Molina J. J.; Lectez S.; Tazi S.; Salanne M.; Dufrêche J. F.; Roques J.; Simoni E.; Madden P. A.; Turq P. Ions in solutions: Determining their polarizabilities from first-principles. J. Chem. Phys. 2011, 134, 014511.10.1063/1.3518101. PubMed DOI
Caldeweyher E.; Bannwarth C.; Grimme S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 2017, 147, 034112.10.1063/1.4993215. PubMed DOI
Caldeweyher E.; Ehlert S.; Hansen A.; Neugebauer H.; Spicher S.; Bannwarth C.; Grimme S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.10.1063/1.5090222. PubMed DOI
Tkatchenko A.; Distasio R. A.; Car R.; Scheffler M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.10.1103/PhysRevLett.108.236402. PubMed DOI
Duignan T. T.; Schenter G. K.; Fulton J. L.; Huthwelker T.; Balasubramanian M.; Galib M.; Baer M. D.; Wilhelm J.; Hutter J.; Del Ben M.; et al. Quantifying the hydration structure of sodium and potassium ions: Taking additional steps on Jacob’s Ladder. Phys. Chem. Chem. Phys. 2020, 22, 10641–10652. 10.1039/C9CP06161D. PubMed DOI
Pluhařová E.; Mason P. E.; Jungwirth P. Ion pairing in aqueous lithium salt solutions with monovalent and divalent counter-anions. J. Phys. Chem. A 2013, 117, 11766–11773. 10.1021/jp402532e. PubMed DOI
Ansell S.; Barnes A. C.; Mason P. E.; Neilson G. W.; Ramos S. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophys. Chem. 2006, 124, 171–179. 10.1016/j.bpc.2006.04.018. PubMed DOI
Mason P. E.; Tavagnacco L.; Saboungi M. L.; Hansen T.; Fischer H. E.; Neilson G. W.; Ichiye T.; Brady J. W. Molecular Dynamics an Neutron Scattering Stuies of Potassium Chlorie in Aqueous Solution. J. Phys. Chem. B 2019, 123, 10807–10813. 10.1021/acs.jpcb.9b08422. PubMed DOI
Duboué-Dijon E.; Mason P. E.; Fischer H. E.; Jungwirth P. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. B 2018, 122, 3296–3306. 10.1021/acs.jpcb.7b09612. PubMed DOI
Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 2018, 148, 222813.10.1063/1.5006779. PubMed DOI
Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; et al. CP2K: An electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.10.1063/5.0007045. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Zhang Y.; Yang W. Comment on “generalized gradient approximation made simple. Phys. Rev. Lett. 1998, 80, 890.10.1103/PhysRevLett.80.890. PubMed DOI
Lippert G.; Hutter J.; Parrinello M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 1997, 92, 477–488. 10.1080/00268979709482119. DOI
VandeVondele J.; Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.10.1063/1.2770708. PubMed DOI
Goedecker S.; Teter M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B - Condens. Matter Mater. Phys. 1996, 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Pluhařová E.; Fischer H. E.; Mason P. E.; Jungwirth P. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 2014, 112, 1230–1240. 10.1080/00268976.2013.875231. DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI
Mason P. E.; Wernersson E.; Jungwirth P. Accurate description of aqueous carbonate ions: An effective polarization model verified by neutron scattering. J. Phys. Chem. B 2012, 116, 8145–8153. 10.1021/jp3008267. PubMed DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI
Allen M. P.; Tildesley D. J.. Comput. Simul. Liq., 2nd ed.; Oxford University Press, 2017; pp 383–387.
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Rowland D.Density of LiCl(aq). 2021; https://advancedthermo.com/electrolytes/density_LiCl.html [accessed 2023-01-16].
Haynes W., Ed. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press, 2016. –2017; Chapter: Volumetric properties of aqueous sodium chloride solutions, pp 6–171.
Rowland D.Density of KCl(aq). 2021; https://advancedthermo.com/electrolytes/density_KCl.html [accessed 2023-01-16].
Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108.10.1063/5.0004608. PubMed DOI
Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e160610.1002/wcms.1606. DOI
Boys S. F.; Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. 10.1080/00268977000101561. DOI
Bartlett R. J.; Musiał M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI
Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 10.1039/b508541a. PubMed DOI