Rapid flipping between electrolyte and metallic states in ammonia solutions of alkali metals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101095957
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
40341389
PubMed Central
PMC12062273
DOI
10.1038/s41467-025-59071-z
PII: 10.1038/s41467-025-59071-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nonmetal-to-metal transitions are among the most fascinating phenomena in material science, associated with strong correlations, large fluctuations, and related features relevant to applications in electronics, spintronics, and optics. Dissolving alkali metals in liquid ammonia results in the formation of solvated electrons, which are localised in dilute solutions but exhibit metallic behaviour at higher concentrations, forming a disordered liquid metal. The electrolyte-to-metal transition in these systems appears to be gradual, but its microscopic origins remain poorly understood. Here, we provide a detailed time-resolved picture of the electrolyte-to-metal transition in solutions of lithium in liquid ammonia, employing ab initio molecular dynamics and many-body perturbation theory, which are validated against photoelectron spectroscopy experiments. We find a rapid flipping between metallic and electrolyte states that persist only on a sub-picosecond timescale within a broad range of concentrations. These flips, occurring within femtoseconds, are characterised by abrupt opening and closing of the band gap, which is connected with only minute changes in the solution structure and the associated electron density.
Charles University Faculty of Mathematics and Physics Ke Karlovu 3 121 16 Prague 2 Czech Republic
Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
Zobrazit více v PubMed
Thompson, J. C. Electrons in Liquid Ammonia. Monographs on the Physics and Chemistry of Materials.https://cir.nii.ac.jp/crid/1130282268819077504 (Clarendon, 1976).
Zurek, E., Edwards, P. & Hoffmann, R. A molecular perspective on lithiumammonia solutions. Angew. Chem. Int. Ed.48, 8198–8232 (2009). PubMed
Mott, N. F. Metal-insulator transitions in metal-ammonia solutions. J. Phys. Chem.84, 1199–1203 (1980).
Hayama, S., Skipper, N. T., Wasse, J. C. & Thompson, H. X-ray diffraction studies of solutions of lithium in ammonia: the structure of the metal-nonmetal transition. J. Chem. Phys.116, 2991–2996 (2002).
Buttersack, T. et al. Photoelectron spectra of alkali metal-ammonia microjets: from blue electrolyte to bronze metal. Science368, 1086–1091 (2020). PubMed
Birch, A. J. Reduction by dissolving metals. Nature158, 585–585 (1946).
Landau, L. & Zeldovich, Y. B. On the relation between the liquid and the gaseous states of metals. Acta Physicochim. USSR18, 194–196 (1943).
Hensel, F. & Franck, E. U. Metal-nonmetal transition in dense mercury vapor. Rev. Mod. Phys.40, 697–703 (1968).
Jortner, J. & Cohen, M. H. Metal-nonmetal transition in metal-ammonia solutions. Phys. Rev. B13, 1548–1568 (1976).
Mott, N. F. The transition to the metallic state. Philos. Mag.6, 287–309 (1961).
Mott, N. Metal-Insulator Transitions. https://books.google.co.uk/books?id=Q0mJQgAACAAJ (Taylor & Francis, 1990).
Herzfeld, K. F. On atomic properties which make an element a metal. Phys. Rev.29, 701–705 (1927).
Thompson, J. C. Metal-nonmetal transition in metal-ammonia solutions. Rev. Mod. Phys.40, 704–710 (1968).
Cohen, M. H. & Thompson, J. C. The electronic and ionic structures of metal-ammonia solutions. Adv. Phys.17, 857–907 (1968).
Schmidt, P. W. Small angle X ray scattering from solutions of alkali metals in liquid ammonia. J. Chem. Phys.27, 23–28 (2004).
Ichikawa, K. & Thompson, J. C. Chemical potentials and related thermodynamics of sodium ammonia solutions. J. Chem. Phys.59, 1680–1692 (2003).
Chieux, P. Small angle neutron scattering studies of concentration fluctuations in the non metal to metal transition range: solutions of 7li in nd3. Phys. Lett. A48, 493–494 (1974).
Cohen, M. H. & Jortner, J. Metal-nonmetal transition in metal-ammonia solutions via the inhomogeneous transport regime. J. Phys. Chem.79, 2900–2915 (1975).
Damay, P. & Schettler, P. Fluctuations in metal-ammonia solutions. J. Phys. Chem.79, 2930–2935 (1975).
Deng, Z., Martyna, G. J. & Klein, M. L. Quantum simulation studies of metal-ammonia solutions. J. Chem. Phys.100, 7590–7601 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865–3868 (1996). PubMed
Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys.110, 6158–6170 (1999).
Zhang, Y. & Yang, W. Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett.80, 890–890 (1998).
Goerigk, L. & Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys.13, 6670–6688 (2011). PubMed
Pavlak, I., Matasović, L., Buchanan, E. A., Michl, J. & Rončević, I. Electronic structure of metalloporphenes, antiaromatic analogues of graphene. J. Am. Chem. Soc.146, 3992–4000 (2024). PubMed PMC
Bischoff, T., Reshetnyak, I. & Pasquarello, A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Res.3, 023182 (2021).
Ambrosio, F., Miceli, G. & Pasquarello, A. Electronic levels of excess electrons in liquid water. J. Phys. Chem. Lett.8, 2055–2059 (2017). PubMed
Lan, J., Rybkin, V. V. & Pasquarello, A. Temperature dependent properties of the aqueous electron. Angew. Chem. Int. Ed.61, e202209398 (2022). PubMed PMC
Baranyi, B. & Turi, L. Ab initio molecular dynamics simulations of solvated electrons in ammonia clusters. J. Phys. Chem. B124, 7205–7216 (2020). PubMed PMC
Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett.14, 870–878 (2023). PubMed
Stratt, R. M. & Xu, B.-C. Band structure in a liquid. Phys. Rev. Lett.62, 1675–1678 (1989). PubMed
Wang, L.-W., Bellaiche, L., Wei, S.-H. & Zunger, A. “Majority representation” of alloy electronic states. Phys. Rev. Lett.80, 4725–4728 (1998).
Zheng, C., Yu, S. & Rubel, O. Structural dynamics in hybrid halide perovskites: bulk Rashba splitting, spin texture, and carrier localization. Phys. Rev. Mater.2, 114604 (2018).
Rubel, O., Bokhanchuk, A., Ahmed, S. J. & Assmann, E. Unfolding the band structure of disordered solids: From bound states to high-mobility Kane fermions. Phys. Rev. B90, 115202 (2014).
Kim, K. S. & Yeom, H. W. Radial band structure of electrons in liquid metals. Phys. Rev. Lett.107, 136402 (2011). PubMed
Kittel, C., McEuen, P. & Sons, J. W. Introduction to Solid State Physics. https://books.google.cz/books?id=rAMujwEACAAJ (John Wiley & Sons, 2005).
Burns, G. Solid State Physics. https://books.google.cz/books?id=R4tGBQAAQBAJ (Academic Press, 2013).
Hirasawa, M., Nakamura, Y. & Shimoji, M. Electrical conductivity and thermoelectric power of concentrated lithium-ammonia solutions. Ber. der Bunsenges. f.ür. physikalische Chem.82, 815–818 (1978).
Vöhringer, P. Ultrafast dynamics of electrons in ammonia. Annu. Rev. Phys. Chem.66, 97–118 (2015). PubMed
Madsen, G. K., Carrete, J. & Verstraete, M. J. Boltztrap2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun.231, 140–145 (2018).
Ricci, F. et al. An ab initio electronic transport database for inorganic materials. Sci. Data4, 1–13 (2017). PubMed PMC
Kang, J. et al. Dynamic three-dimensional structures of a metal–organic framework captured with femtosecond serial crystallography. Nat. Chem.16, 693–699 (2024). PubMed PMC
Chakraborty, D. & Chandra, A. Voids and necks in liquid ammonia and their roles in diffusion of ions of varying size. J. Comput. Chem.33, 843–852 (2012). PubMed
Berendsen, H., van der Spoel, D. & van Drunen, R. Gromacs: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun.91, 43–56 (1995).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B47, 558–561 (1993). PubMed
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B49, 14251–14269 (1994). PubMed
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.6, 15–50 (1996). PubMed
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169–11186 (1996). PubMed
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.132, 154104 (2010). PubMed
Kostal, V., Mason, P. E., Martinez-Seara, H. & Jungwirth, P. Common cations are not polarizable: effects of dispersion correction on hydration structures from ab initio molecular dynamics. J. Phys. Chem. Lett.14, 4403–4408 (2023). PubMed PMC
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B50, 17953–17979 (1994). PubMed
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B59, 1758–1775 (1999).
Ricci, A. & Ciccotti, G. Algorithms for brownian dynamics. Mol. Phys.101, 1927–1931 (2003).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B13, 5188–5192 (1976).
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys.32, 165902 (2020). PubMed
Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev.139, A796–A823 (1965).
Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B34, 5390–5413 (1986). PubMed