Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38294407
PubMed Central
PMC10870706
DOI
10.1021/jacs.3c12079
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Zinc porphene is a two-dimensional material made of fully fused zinc porphyrins in a tetragonal lattice. It has a fully conjugated π-system, making it similar to graphene. Zinc porphene has recently been synthesized, and a combination of rough conductivity measurements and infrared and Raman spectroscopies all suggested that it is a semiconductor (Magnera, T.F. et al. Porphene and Porphite as Porphyrin Analogs of Graphene and Graphite, Nat. Commun.2023, 14, 6308). This is in contrast with all previous predictions of its electronic structure, which indicated metallic conductivity. We show that the gap-opening in zinc porphene is caused by a Peierls distortion of its unit cell from square to rectangular, thus giving the first account of its electronic structure in agreement with the experiment. Accounting for this distortion requires proper treatment of electron delocalization, which can be done using hybrid functionals with a substantial amount of exact exchange. Such a functional, PBE38, is then applied to predict the properties of many first transition row metalloporphenes, some of which have already been prepared. We find that changing the metal strongly affects the electronic structure of metalloporphenes, resulting in a rich variety of both metallic conductors and semiconductors, which may be of great interest to molecular electronics and spintronics. Properties of these materials are mostly governed by the extent of the Peierls distortion and the number of electrons in their π-system, analogous to changes in aromaticity observed in cyclic conjugated molecules upon oxidation or reduction. These results give an account of how the concept of antiaromaticity can be extended to periodic systems.
Department of Chemistry Faculty of Science University of Zagreb Horvatovac 102A Zagreb 10000 Croatia
Department of Chemistry University of Oxford Chemistry Research Laboratory Oxford OX1 3TA U K
Zobrazit více v PubMed
Wang W.; Zhao W.; Xu H.; Liu S.; Huang W.; Zhao Q. Fabrication of ultra-thin 2d covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 2021, 429, 21361610.1016/j.ccr.2020.213616. DOI
Dong R.; Zhang T.; Feng X. Interface-assisted synthesis of 2d materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235. 10.1021/acs.chemrev.8b00056. PubMed DOI
Colson J. W.; Dichtel W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453–465. 10.1038/nchem.1628. PubMed DOI
Payamyar P.; King B. T.; Öttinger H. C.; Schlüter A. D. Two-dimensional polymers: Concepts and perspectives. Chem. Commun. 2016, 52, 18–34. 10.1039/C5CC07381B. PubMed DOI
Cai Z.; Liu B.; Zou X.; Cheng H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133. 10.1021/acs.chemrev.7b00536. PubMed DOI
Zeng M.; Xiao Y.; Liu J.; Yang K.; Fu L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296. 10.1021/acs.chemrev.7b00633. PubMed DOI
Jin H.; Guo C.; Liu X.; Liu J.; Vasileff A.; Jiao Y.; Zheng Y.; Qiao S.-Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. 10.1021/acs.chemrev.7b00689. PubMed DOI
Ares P.; Novoselov K. S. Recent advances in graphene and other 2d materials. Nano Materials Science 2022, 4, 3–9. 10.1016/j.nanoms.2021.05.002. DOI
Novoselov K. S.; Fal′ko V. I.; Colombo L.; Gellert P. R.; Schwab M. G.; Kim K. A roadmap for graphene. Nature 2012, 490, 192–200. 10.1038/nature11458. PubMed DOI
Allen M. J.; Tung V. C.; Kaner R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. 10.1021/cr900070d. PubMed DOI
Pumera M.; Sofer Z. Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 2017, 46, 4450–4463. 10.1039/C7CS00215G. PubMed DOI
Matochová D.; Medved’ M.; Bakandritsos A.; Steklý T.; Zbořil R.; Otyepka M. 2d chemistry: Chemical control of graphene derivatization. J. Phys. Chem. Lett. 2018, 9, 3580–3585. 10.1021/acs.jpclett.8b01596. PubMed DOI PMC
Magnera T. F.; Dron P. I.; Bozzone J. P.; Jovanovic M.; Rončević I.; Tortorici E.; Bu W.; Miller E. M.; Rogers C. T.; Michl J. Porphene and porphite as porphyrin analogs of graphene and graphite. Nat. Commun. 2023, 14, 6308.10.1038/s41467-023-41461-w. PubMed DOI PMC
Ono Y.; Hamano T. Peierls distortion in two-dimensional tight-binding model. J. Phys. Soc. Jpn. 2000, 69, 1769–1776. 10.1143/JPSJ.69.1769. DOI
Kertesz M.; Choi C. H.; Yang S. Conjugated polymers and aromaticity. Chem. Rev. 2005, 105, 3448–3481. 10.1021/cr990357p. PubMed DOI
Popov I. A.; Bozhenko K. V.; Boldyrev A. I. Is graphene aromatic?. Nano Research 2012, 5, 117–123. 10.1007/s12274-011-0192-z. DOI
Zdetsis A. D.; Economou E. N. A pedestrian approach to the aromaticity of graphene and nanographene: Significance of huckel’s (4n+2)π electron rule. J. Phys. Chem. C 2015, 119, 16991–17003. 10.1021/acs.jpcc.5b04311. DOI
Nakamura Y.; Aratani N.; Shinokubo H.; Takagi A.; Kawai T.; Matsumoto T.; Yoon Z. S.; Kim D. Y.; Ahn T. K.; Kim D.; et al. A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J. Am. Chem. Soc. 2006, 128, 4119–4127. 10.1021/ja057812l. PubMed DOI
Yamaguchi Y. Theoretical study of two-dimensionally fused zinc porphyrins: Dft calculations. Int. J. Quantum Chem. 2009, 109, 1584–1597. 10.1002/qua.21998. DOI
Yamaguchi Y. Transport properties of two-dimensionally fused zinc porphyrins from linear-response approach. Int. J. Quantum Chem. 2011, 111, 3230–3238. 10.1002/qua.22717. DOI
Yamaguchi Y. Theoretical prediction of electronic structures of fully pi-conjugated zinc oligoporphyrins with curved surface structures. J. Chem. Phys. 2004, 120, 7963–7970. 10.1063/1.1690759. PubMed DOI
Posligua V.; Aziz A.; Haver R.; Peeks M. D.; Anderson H. L.; Grau-Crespo R. Band structures of periodic porphyrin nanostructures. J. Phys. Chem. C 2018, 122, 23790–23798. 10.1021/acs.jpcc.8b08131. DOI
Tan J.; Li W.; He X.; Zhao M. Stable ferromagnetism and half-metallicity in two-dimensional polyporphyrin frameworks. RSC Adv. 2013, 3, 7016–7022. 10.1039/c3ra40502h. DOI
Liu J.-H.; Yang L.-M.; Ganz E. Electrocatalytic reduction of co2 by two-dimensional transition metal porphyrin sheets. Journal of Materials Chemistry A 2019, 7, 11944–11952. 10.1039/C9TA01188A. DOI
Glöcklhofer F. Concealed antiaromaticity. ChemRxiv 2023, 10.26434/chemrxiv-2023-hnl0w-v2. DOI
Ono S. Two-dimensional square lattice polonium stabilized by the spin–orbit coupling. Sci. Rep. 2020, 10, 11810.10.1038/s41598-020-68877-4. PubMed DOI PMC
Nevalaita J.; Koskinen P. Atlas for the properties of elemental two-dimensional metals. Phys. Rev. B 2018, 97, 03541110.1103/PhysRevB.97.035411. DOI
Arovas D. P.; Berg E.; Kivelson S. A.; Raghu S. The hubbard model. Annual Review of Condensed Matter Physics 2022, 13, 239–274. 10.1146/annurev-conmatphys-031620-102024. DOI
Zaffran J.; Caspary Toroker M. Benchmarking density functional theory based methods to model niooh material properties: Hubbard and van der waals corrections vs hybrid functionals. J. Chem. Theory Comput. 2016, 12, 3807–3812. 10.1021/acs.jctc.6b00657. PubMed DOI
Cohen A. J.; Mori-Sánchez P.; Yang W. Insights into current limitations of density functional theory. Science 2008, 321, 792–794. 10.1126/science.1158722. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Baryshnikov G. V.; Valiev R. R.; Kuklin A. V.; Sundholm D.; Ågren H. Cyclo[18]carbon: Insight into electronic structure, aromaticity, and surface coupling. J. Phys. Chem. Lett. 2019, 10, 6701–6705. 10.1021/acs.jpclett.9b02815. PubMed DOI
Deng J.-R.; Bradley D.; Jirásek M.; Anderson H. L.; Peeks M. D. Correspondence on “how aromatic are molecular nanorings? The case of a six-porphyrin nanoring”**. Angew. Chem., Int. Ed. 2022, 61, e20220123110.1002/anie.202201231. PubMed DOI
Karas L. J.; Jalife S.; Viesser R. V.; Soares J. V.; Haley M. M.; Wu J. I. Tetra-tert-butyl-s-indacene is a bond-localized c2h structure and a challenge for computational chemistry. Angew. Chem., Int. Ed. 2023, 62, e20230737910.1002/anie.202307379. PubMed DOI PMC
Parthey M.; Kaupp M. Quantum-chemical insights into mixed-valence systems: Within and beyond the robin–day scheme. Chem. Soc. Rev. 2014, 43, 5067–5088. 10.1039/C3CS60481K. PubMed DOI
Renz M.; Theilacker K.; Lambert C.; Kaupp M. A reliable quantum-chemical protocol for the characterization of organic mixed-valence compounds. J. Am. Chem. Soc. 2009, 131, 16292–16302. 10.1021/ja9070859. PubMed DOI
Kröncke S.; Herrmann C. Toward a first-principles evaluation of transport mechanisms in molecular wires. J. Chem. Theory Comput. 2020, 16, 6267–6279. 10.1021/acs.jctc.0c00667. PubMed DOI
Herrmann C. Electronic communication as a transferable property of molecular bridges?. J. Phys. Chem. A 2019, 123, 10205–10223. 10.1021/acs.jpca.9b05618. PubMed DOI
Tanaka Y.; Takahashi H.; Akita M. Estimation of electron distribution over dinuclear organometallic molecular wires by “ir tag” analysis of ancillary acyl-cp ligands. ACS Organic & Inorganic Au 2022, 2, 327–342. 10.1021/acsorginorgau.2c00005. PubMed DOI PMC
Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016, 116, 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI
Santra G.; Martin J. M. L. What types of chemical problems benefit from density-corrected dft? A probe using an extensive and chemically diverse test suite. J. Chem. Theory Comput. 2021, 17, 1368–1379. 10.1021/acs.jctc.0c01055. PubMed DOI PMC
Monino E.; Boggio-Pasqua M.; Scemama A.; Jacquemin D.; Loos P.-F. Reference energies for cyclobutadiene: Automerization and excited states. J. Phys. Chem. A 2022, 126, 4664–4679. 10.1021/acs.jpca.2c02480. PubMed DOI
Wenthold P. G.; Hrovat D. A.; Borden W. T.; Lineberger W. C. Transition-state spectroscopy of cyclooctatetraene. Science 1996, 272, 1456–1459. 10.1126/science.272.5267.1456. PubMed DOI
Krygowski T. M.; Szatylowicz H.; Stasyuk O. A.; Dominikowska J.; Palusiak M. Aromaticity from the viewpoint of molecular geometry: Application to planar systems. Chem. Rev. 2014, 114, 6383–6422. 10.1021/cr400252h. PubMed DOI
Kruszewski J.; Krygowski T. M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972, 13, 3839–3842. 10.1016/S0040-4039(01)94175-9. DOI
Zhou Z.; Petrukhina M. A. Planar, curved and twisted molecular nanographenes: Reduction-induced alkali metal coordination. Coord. Chem. Rev. 2023, 486, 21514410.1016/j.ccr.2023.215144. DOI
Zabula A. V.; Spisak S. N.; Filatov A. S.; Rogachev A. Y.; Petrukhina M. A. Record alkali metal intercalation by highly charged corannulene. Acc. Chem. Res. 2018, 51, 1541–1549. 10.1021/acs.accounts.8b00141. PubMed DOI
Zhu H.; Chen Q.; Rončević I.; Christensen K. E.; Anderson H. L. Anthracene-porphyrin nanoribbons. Angew. Chem., Int. Ed. 2023, 31, e20230703510.1002/anie.202307035. PubMed DOI
Barker J. E.; Dressler J. J.; Cárdenas Valdivia A.; Kishi R.; Strand E. T.; Zakharov L. N.; MacMillan S. N.; Gómez-García C. J.; Nakano M.; Casado J.; Haley M. M. Molecule isomerism modulates the diradical properties of stable singlet diradicaloids. J. Am. Chem. Soc. 2020, 142, 1548–1555. 10.1021/jacs.9b11898. PubMed DOI
Mishra S.; Vilas-Varela M.; Lieske L.-A.; Ortiz R.; Fatayer S.; Rončević I.; Albrecht F.; Frederiksen T.; Peña D.; Gross L.. Bistability between pi-diradical open-shell and closed-shell states in indeno[1,2-a]fluorene. arXiv 2023. 10.48550/arXiv.2303.04483. PubMed DOI PMC
Tachikawa H. Jahn–teller effect of the benzene radical cation: A direct ab initio molecular dynamics study. J. Phys. Chem. A 2018, 122, 4121–4129. 10.1021/acs.jpca.8b00292. PubMed DOI
Bazante A. P.; Davidson E. R.; Bartlett R. J. The benzene radical anion: A computationally demanding prototype for aromatic anions. J. Chem. Phys. 2015, 142, 20430410.1063/1.4921261. PubMed DOI
García de Arquer F. P.; Talapin D. V.; Klimov V. I.; Arakawa Y.; Bayer M.; Sargent E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz854110.1126/science.aaz8541. PubMed DOI
Gaita-Ariño A.; Luis F.; Hill S.; Coronado E. Molecular spins for quantum computation. Nat. Chem. 2019, 11, 301–309. 10.1038/s41557-019-0232-y. PubMed DOI
Hirohata A.; Yamada K.; Nakatani Y.; Prejbeanu I.-L.; Diény B.; Pirro P.; Hillebrands B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 16671110.1016/j.jmmm.2020.166711. DOI
Zatko V.; Dubois S. M. M.; Godel F.; Galbiati M.; Peiro J.; Sander A.; Carretero C.; Vecchiola A.; Collin S.; Bouzehouane K.; et al. Almost perfect spin filtering in graphene-based magnetic tunnel junctions. ACS Nano 2022, 16, 14007–14016. 10.1021/acsnano.2c03625. PubMed DOI PMC
Lakatos I.The methodology of scientific research programmes: Philosophical papers; Cambridge University Press, 1978. 10.1017/CBO9780511621123. DOI
Zhou C.; Gagliardi L.; Truhlar D. G. Multiconfiguration pair-density functional theory for iron porphyrin with cas, ras, and dmrg active spaces. J. Phys. Chem. A 2019, 123, 3389–3394. 10.1021/acs.jpca.8b12479. PubMed DOI
Plutnar J.; Bednarova L.; Cisarova I.; Dracinsky M.; Krepsova L.; Tarabek J.; Michl J. Parent porphyrin (porphine) and its complexes with 3d metals. ChemRxiv 2023, 10.26434/chemrxiv-2023-tf6b4. DOI
Lin Z.; Lin L.; Zhu J.; Wu W.; Yang X.; Sun X. An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 2022, 14, 38689–38695. 10.1021/acsami.2c08170. PubMed DOI
Di Giovannantonio M.; Eimre K.; Yakutovich A. V.; Chen Q.; Mishra S.; Urgel J. I.; Pignedoli C. A.; Ruffieux P.; Müllen K.; Narita A.; Fasel R. On-surface synthesis of antiaromatic and open-shell indeno[2,1-b]fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354. 10.1021/jacs.9b05335. PubMed DOI
Ukai S.; Takamatsu A.; Nobuoka M.; Tsutsui Y.; Fukui N.; Ogi S.; Seki S.; Yamaguchi S.; Shinokubo H. A supramolecular polymer constituted of antiaromatic niii norcorroles. Angew. Chem., Int. Ed. 2022, 61, e20211423010.1002/anie.202114230. PubMed DOI
Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. 10.1103/PhysRevB.47.558. PubMed DOI
Wang V.; Xu N.; Liu J.-C.; Tang G.; Geng W.-T. Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun. 2021, 267, 10803310.1016/j.cpc.2021.108033. DOI
Madsen G. K. H.; Carrete J.; Verstraete M. J. Boltztrap2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145. 10.1016/j.cpc.2018.05.010. DOI
Rapid flipping between electrolyte and metallic states in ammonia solutions of alkali metals
Global Aromatic Ring Currents in Neutral Porphyrin Nanobelts