Global Aromatic Ring Currents in Neutral Porphyrin Nanobelts
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39810377
PubMed Central
PMC11752501
DOI
10.1021/acsnano.4c14100
Knihovny.cz E-zdroje
- Klíčová slova
- aromaticity, density functional theory, molecular electronics, porphyrin nanobelts, ring current,
- Publikační typ
- časopisecké články MeSH
The ability of a ring-shaped molecule to sustain a global aromatic or antiaromatic ring current when placed in a magnetic field indicates that its electronic wave function is coherently delocalized around its whole circumference. Large molecules that display this behavior are attractive components for molecular electronic devices, but this phenomenon is rare in neutral molecules with circuits of more than 40 π-electrons. Here, we use theoretical methods to investigate how the global ring currents evolve with increasing ring size in cyclic molecular nanobelts built from edge-fused porphyrins. Our results indicate that a global ring current persists in neutral nanobelts with Hückel circuits of 220 π-electrons (22 porphyrin units, circumference 18.6 nm). Our predictions are validated by using coupled clusters to construct a density functional approximation (denoted as OX-B3LYP) that accurately describes these nanobelts and by checking compliance with Koopmans' theorem.
Chemistry Research Laboratory Department of Chemistry University of Oxford Oxford OX1 3TA U K
Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL U K
Zobrazit více v PubMed
Shalf J. The Future of Computing Beyond Moore’s Law. Philos. Trans. R. Soc. A 2020, 378, 20190061.10.1098/rsta.2019.0061. PubMed DOI
Chen Z.; Grace I. M.; Woltering S. L.; Chen L.; Gee A.; Baugh J.; Briggs G. A. D.; Bogani L.; Mol J. A.; Lambert C. J.; et al. Quantum Interference Enhances the Performance of Single-Molecule Transistors. Nat. Nanotechnol. 2024, 19, 986–992. 10.1038/s41565-024-01633-1. PubMed DOI PMC
Cheung K. Y.; Watanabe K.; Segawa Y.; Itami K. Synthesis of a Zigzag Carbon Nanobelt. Nat. Chem. 2021, 13, 255–259. 10.1038/s41557-020-00627-5. PubMed DOI
Imoto D.; Yagi A.; Itami K. Carbon Nanobelts: Brief History and Perspective. Precis. Chem. 2023, 1, 516–523. 10.1021/prechem.3c00083. DOI
Lin J.; Wang S.; Zhang F.; Yang B.; Du P.; Chen C.; Zang Y.; Zhu D. Highly Efficient Charge Transport across Carbon Nanobelts. Sci. Adv. 2022, 8, eade469210.1126/sciadv.ade4692. PubMed DOI PMC
Deng J.-R.; González M. T.; Zhu H.; Anderson H. L.; Leary E. Ballistic Conductance through Porphyrin Nanoribbons. J. Am. Chem. Soc. 2024, 146, 3651–3659. 10.1021/jacs.3c07734. PubMed DOI PMC
Tsuda A.; Osuka A. Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science 2001, 293, 79–82. 10.1126/science.1059552. PubMed DOI
Chen Z.; Deng J.-R.; Hou S.; Bian X.; Swett J. L.; Wu Q.; Baugh J.; Bogani L.; Briggs G. A. D.; Mol J. A.; et al. Phase-Coherent Charge Transport through a Porphyrin Nanoribbon. J. Am. Chem. Soc. 2023, 145, 15265–15274. 10.1021/jacs.3c02451. PubMed DOI PMC
Yamaguchi Y. Theoretical Prediction of Electronic Structures of Fully π-Conjugated Zinc Oligoporphyrins with Curved Surface Structures. J. Chem. Phys. 2004, 120, 7963–7970. 10.1063/1.1690759. PubMed DOI
Gershoni-Poranne R.; Stanger A. Magnetic Criteria of Aromaticity. Chem. Soc. Rev. 2015, 44, 6597–6615. 10.1039/C5CS00114E. PubMed DOI
Steiner E.; Fowler P. W. Four- and Two-Electron Rules for Diatropic and Paratropic Ring Currents in Monocyclic π Systems. ChemComm 2001, 2220–2221. 10.1039/b104847n. PubMed DOI
Jirásek M.; Anderson H. L.; Peeks M. D. From Macrocycles to Quantum Rings: Does Aromaticity Have a Size Limit?. Acc. Chem. Res. 2021, 54, 3241–3251. 10.1021/acs.accounts.1c00323. PubMed DOI
Peeks M. D.; Jirasek M.; Claridge T. D. W.; Anderson H. L. Global Aromaticity and Antiaromaticity in Porphyrin Nanoring Anions. Angew. Chem., Int. Ed. 2019, 58, 15717–15720. 10.1002/anie.201909032. PubMed DOI PMC
Rickhaus M.; Jirasek M.; Tejerina L.; Gotfredsen H.; Peeks M. D.; Haver R.; Jiang H.-W.; Claridge T. D. W.; Anderson H. L. Global Aromaticity at the Nanoscale. Nat. Chem. 2020, 12, 236–241. 10.1038/s41557-019-0398-3. PubMed DOI PMC
Majewski M. A.; Stawski W.; Van Raden J. M.; Clarke M.; Hart J.; O’Shea J. N.; Saywell A.; Anderson H. L. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring. Angew. Chem., Int. Ed. 2023, 62, e20230211410.1002/anie.202302114. PubMed DOI PMC
Kopp S. M.; Gotfredsen H.; Hergenhahn J.; Rodríguez-Rubio A.; Deng J.-R.; Zhu H.; Stawski W.; Anderson H. L. Charge Delocalization and Global Aromaticity in a Partially Fused 12-Porphyrin Nanoring. Chem. 2024, 10, 3410–3427. 10.1016/j.chempr.2024.06.034. DOI
Bradley D.; Jirásek M.; Anderson H. L.; Peeks M. D. Disentangling Global and Local Ring Currents. Chem. Sci. 2023, 14, 1762–1768. 10.1039/D2SC05923A. PubMed DOI PMC
Shaik S.; Shurki A.; Danovich D.; Hiberty P. C. A Different Story of π-Delocalization the Distortivity of π-Electrons and Its Chemical Manifestations. Chem. Rev. 2001, 101, 1501–1540. 10.1021/cr990363l. PubMed DOI
Jug K.; Hiberty P. C.; Shaik S. σ–π Energy Separation in Modern Electronic Theory for Ground States of Conjugated Systems. Chem. Rev. 2001, 101, 1477–1500. 10.1021/cr990328e. PubMed DOI
Heilbronner E. Why Do Some Molecules Have Symmetry Different from That Expected?. J. Chem. Educ. 1989, 66, 471.10.1021/ed066p471. DOI
Pavlak I.; Matasović L.; Buchanan E. A.; Michl J.; Rončević I. Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene. J. Am. Chem. Soc. 2024, 146, 3992–4000. 10.1021/jacs.3c12079. PubMed DOI PMC
Longuet-Higgins H. C.; Salem L. The Alternation of Bond Lengths in Long Conjugated Chain Molecules. Philos. Trans. R. Soc. A 1959, 251, 172–185. 10.1098/rspa.1959.0100. DOI
Bao J. L.; Gagliardi L.; Truhlar D. G. Self-Interaction Error in Density Functional Theory: An Appraisal. J. Phys. Chem. Lett. 2018, 9, 2353–2358. 10.1021/acs.jpclett.8b00242. PubMed DOI
Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Zhao Y.; Truhlar D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. 10.1007/s00214-007-0310-x. DOI
Casademont-Reig I.; Guerrero-Avilés R.; Ramos-Cordoba E.; Torrent-Sucarrat M.; Matito E. How Aromatic Are Molecular Nanorings? The Case of a Six-Porphyrin Nanoring. Angew. Chem., Int. Ed. 2021, 60, 24080–24088. 10.1002/anie.202108997. PubMed DOI PMC
Deng J.-R.; Bradley D.; Jirásek M.; Anderson H. L.; Peeks M. D. Correspondence on “How Aromatic Are Molecular Nanorings? The Case of a Six-Porphyrin Nanoring”. Angew. Chem., Int. Ed. 2022, 61, e20220123110.1002/anie.202201231. PubMed DOI
Valiev R. R.; Baryshnikov G. V.; Nasibullin R. T.; Sundholm D.; Ågren H. When Are Antiaromatic Molecules Paramagnetic?. J. Phys. Chem. C 2020, 124, 21027–21035. 10.1021/acs.jpcc.0c01559. DOI
Mahmood A.; Dimitrova M.; Sundholm D. Current-Density Calculations on Zn-Porphyrin40 Nanorings. J. Phys. Chem. A 2023, 127, 7452–7459. 10.1021/acs.jpca.3c03564. PubMed DOI PMC
Vydrov O. A.; Heyd J.; Krukau A. V.; Scuseria G. E. Importance of Short-Range Versus Long-Range Hartree-Fock Exchange for the Performance of Hybrid Density Functionals. J. Chem. Phys. 2006, 125, 074106.10.1063/1.2244560. PubMed DOI
Santra G.; Calinsky R.; Martin J. M. L. Benefits of Range-Separated Hybrid and Double-Hybrid Functionals for a Large and Diverse Data Set of Reaction Energies and Barrier Heights. J. Phys. Chem. A 2022, 126, 5492–5505. 10.1021/acs.jpca.2c03922. PubMed DOI PMC
Szczepanik D. W.; Solà M.; Andrzejak M.; Pawełek B.; Dominikowska J.; Kukułka M.; Dyduch K.; Krygowski T. M.; Szatylowicz H. The Role of the Long-Range Exchange Corrections in the Description of Electron Delocalization in Aromatic Species. J. Comput. Chem. 2017, 38, 1640–1654. 10.1002/jcc.24805. PubMed DOI
Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAB-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI
Casademont-Reig I.; Soriano-Agueda L.; Ramos-Cordoba E.; Torrent-Sucarrat M.; Matito E. Reply to the Correspondence on “How Aromatic Are Molecular Nanorings? The Case of a Six-Porphyrin Nanoring”. Angew. Chem., Int. Ed. 2022, 61, e20220683610.1002/anie.202206836. PubMed DOI
Binsch G.; Heilbronner E.; Murrell J. N. The Theory of Double Bond Fixation in Conjugated Hydrocarbons. Mol. Phys. 1966, 11, 305–320. 10.1080/00268976600101141. DOI
Fowler P. W. Symmetry Aspects of Distortivity in π Systems. Adv. Quantum Chem. 2003, 44, 219–237. 10.1016/S0065-3276(03)44014-8. DOI
Stawski W.; Zhu Y.; Rončević I.; Wei Z.; Petrukhina M. A.; Anderson H. L. The Anti-Aromatic Dianion and Aromatic Tetraanion of [18]Annulene. Nat. Chem. 2024, 16, 998–1002. 10.1038/s41557-024-01469-1. PubMed DOI PMC
Woller T.; Banerjee A.; Sylvetsky N.; Santra G.; Deraet X.; De Proft F.; Martin J. M. L.; Alonso M. Performance of Electronic Structure Methods for the Description of Hückel–Möbius Interconversions in Extended π-Systems. J. Phys. Chem. A 2020, 124, 2380–2397. 10.1021/acs.jpca.9b10880. PubMed DOI PMC
Tučková L.; Jaroš A.; Foroutan-Nejad C.; Straka M. A Quest for Ideal Electric Field-Driven MX@C70 Endohedral Fullerene Memristors: Which MX Fits the Best?. Phys. Chem. Chem. Phys. 2023, 25, 14245–14256. 10.1039/D3CP01149F. PubMed DOI
Park K. H. K.; Frank N.; Duarte F.; Anderson E. A. Collective Synthesis of Illudalane Sesquiterpenes Via Cascade Inverse Electron Demand (4 + 2) Cycloadditions of Thiophene S,S-Dioxides. J. Am. Chem. Soc. 2022, 144, 10017–10024. 10.1021/jacs.2c03304. PubMed DOI PMC
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Lin Y.-S.; Li G.-D.; Mao S.-P.; Chai J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput. 2013, 9, 263–272. 10.1021/ct300715s. PubMed DOI
Kong L.; Bischoff F. A.; Valeev E. F. Explicitly Correlated R12/F12 Methods for Electronic Structure. Chem. Rev. 2012, 112, 75–107. 10.1021/cr200204r. PubMed DOI
Belosludov R. V.; Nevonen D. E.; Nemykin V. N. Accurate Prediction of the Excited States in the Fully Conjugated Porphyrin Tapes across the Full Spectral Range: A Story of the Interplay between π–π* and Intramolecular Charge-Transfer Transitions in Soft Chromophores. J. Phys. Chem. A 2021, 125, 2480–2491. 10.1021/acs.jpca.1c00217. PubMed DOI
Jirásek M.; Rickhaus M.; Tejerina L.; Anderson H. L. Experimental and Theoretical Evidence for Aromatic Stabilization Energy in Large Macrocycles. J. Am. Chem. Soc. 2021, 143, 2403–2412. 10.1021/jacs.0c12845. PubMed DOI
Kronik L.; Stein T.; Refaely-Abramson S.; Baer R. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput. 2012, 8, 1515–1531. 10.1021/ct2009363. PubMed DOI
Karolewski A.; Kronik L.; Kümmel S. Using Optimally Tuned Range Separated Hybrid Functionals in Ground-State Calculations: Consequences and Caveats. J. Chem. Phys. 2013, 138, 204115.10.1063/1.4807325. PubMed DOI
Manna D.; Blumberger J.; Martin J. M. L.; Kronik L. Prediction of Electronic Couplings for Molecular Charge Transfer Using Optimally Tuned Range-Separated Hybrid Functionals. Mol. Phys. 2018, 116, 2497–2505. 10.1080/00268976.2018.1489084. DOI
Kopp S. M.; Gotfredsen H.; Deng J.-R.; Claridge T. D. W.; Anderson H. L. Global Aromaticity in a Partially Fused 8-Porphyrin Nanoring. J. Am. Chem. Soc. 2020, 142, 19393–19401. 10.1021/jacs.0c09973. PubMed DOI
Stoychev G. L.; Auer A. A.; Izsák R.; Neese F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J. Chem. Theory Comput. 2018, 14, 619–637. 10.1021/acs.jctc.7b01006. PubMed DOI
Stoychev G. L.; Auer A. A.; Neese F. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J. Chem. Theory Comput. 2018, 14, 4756–4771. 10.1021/acs.jctc.8b00624. PubMed DOI
Van Damme S.; Acke G.; Havenith R. W. A.; Bultinck P. Can the Current Density Map Topology Be Extracted from the Nucleus Independent Chemical Shifts?. Phys. Chem. Chem. Phys. 2016, 18, 11746–11755. 10.1039/C5CP07170D. PubMed DOI
Fliegl H.; Taubert S.; Lehtonen O.; Sundholm D. The Gauge Including Magnetically Induced Current Method. Phys. Chem. Chem. Phys. 2011, 13, 20500–20518. 10.1039/c1cp21812c. PubMed DOI
Jusélius J.; Sundholm D.; Gauss J. Calculation of Current Densities Using Gauge-Including Atomic Orbitals. J. Chem. Phys. 2004, 121, 3952–3963. 10.1063/1.1773136. PubMed DOI
Peeks M. D.; Claridge T. D. W.; Anderson H. L. Aromatic and Antiaromatic Ring Currents in a Molecular Nanoring. Nature 2017, 541, 200–203. 10.1038/nature20798. PubMed DOI
Monaco G.; Summa F. F.; Zanasi R. Program Package for the Calculation of Origin-Independent Electron Current Density and Derived Magnetic Properties in Molecular Systems. J. Chem. Inf. Model. 2021, 61, 270–283. 10.1021/acs.jcim.0c01136. PubMed DOI
Szczepanik D. W.; Andrzejak M.; Dominikowska J.; Pawełek B.; Krygowski T. M.; Szatylowicz H.; Solà M. The Electron Density of Delocalized Bonds (EDDB) Applied for Quantifying Aromaticity. Phys. Chem. Chem. Phys. 2017, 19, 28970–28981. 10.1039/C7CP06114E. PubMed DOI
Zhu H.; Chen Q.; Rončević I.; Christensen K. E.; Anderson H. L. Anthracene-Porphyrin Nanoribbons. Angew. Chem., Int. Ed. 2023, 62, e20230703510.1002/anie.202307035. PubMed DOI
O’Sullivan M. C.; Sprafke J. K.; Kondratuk D. V.; Rinfray C.; Claridge T. D. W.; Saywell A.; Blunt M. O.; O’Shea J. N.; Beton P. H.; Malfois M.; et al. Vernier Templating and Synthesis of a 12-Porphyrin Nano-Ring. Nature 2011, 469, 72–75. 10.1038/nature09683. PubMed DOI
Hoffmann M.; Wilson C. J.; Odell B.; Anderson H. L. Template-Directed Synthesis of a π-Conjugated Porphyrin Nanoring. Angew. Chem., Int. Ed. 2007, 46, 3122–3125. 10.1002/anie.200604601. PubMed DOI
Gotfredsen H.; Deng J.-R.; Van Raden J. M.; Righetto M.; Hergenhahn J.; Clarke M.; Bellamy-Carter A.; Hart J.; O’Shea J.; Claridge T. D. W.; et al. Bending a Photonic Wire into a Ring. Nat. Chem. 2022, 14, 1436–1442. 10.1038/s41557-022-01032-w. PubMed DOI
Wheeler S. E.; Houk K. N.; Schleyer P. v. R.; Allen W. D. A Hierarchy of Homodesmotic Reactions for Thermochemistry. J. Am. Chem. Soc. 2009, 131, 2547–2560. 10.1021/ja805843n. PubMed DOI PMC
Wiberg K. B. The Concept of Strain in Organic Chemistry. Angew. Chem., Int. Ed. Engl. 1986, 25, 312–322. 10.1002/anie.198603121. DOI
Merino G.; Solà M.; Fernández I.; Foroutan-Nejad C.; Lazzeretti P.; Frenking G.; Anderson H. L.; Sundholm D.; Cossío F. P.; Petrukhina M. A.; et al. Aromaticity: Quo Vadis. Chem. Sci. 2023, 14, 5569.10.1039/D2SC04998H. PubMed DOI PMC
Soya T.; Mori H.; Osuka A. Quadruply Twisted Hückel-Aromatic Dodecaphyrin. Angew. Chem., Int. Ed. 2018, 57, 15882–15886. 10.1002/anie.201811433. PubMed DOI
Ishida S.-I.; Kim J.; Shimizu D.; Kim D.; Osuka A. Synthesis of (Bis)Silicon Complexes of [38], [37], and [36]Octaphyrins: Aromaticity Switch and Stable Radical Cation. Angew. Chem., Int. Ed. 2018, 57, 5876–5880. 10.1002/anie.201801986. PubMed DOI
Anand V. G.; Saito S.; Shimizu S.; Osuka A. Internally 1,4-Phenylene-Bridged Meso Aryl-Substituted Expanded Porphyrins: The Decaphyrin and Octaphyrin Cases. Angew. Chem., Int. Ed. 2005, 44, 7244–7248. 10.1002/anie.200502769. PubMed DOI
Hod O.; Rabani E.; Baer R. Magnetoresistance of Nanoscale Molecular Devices. Acc. Chem. Res. 2006, 39, 109–117. 10.1021/ar0401909. PubMed DOI
Bannwarth C.; Ehlert S.; Grimme S. GFN2-XTB—an Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16. Rev. C.01: Wallingford, CT, 2016.
Neese F.; Wennmohs F.; Becker U.; Riplinger C. The Orca Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108.10.1063/5.0004608. PubMed DOI
Grimme S. Improved Second-Order Møller–Plesset Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-Spin Pair Correlation Energies. J. Chem. Phys. 2003, 118, 9095–9102. 10.1063/1.1569242. DOI
Balasubramani S. G.; Chen G. P.; Coriani S.; Diedenhofen M.; Frank M. S.; Franzke Y. J.; Furche F.; Grotjahn R.; Harding M. E.; Hättig C.; et al. Turbomole: Modular Program Suite for Ab Initio Quantum-Chemical and Condensed-Matter Simulations. J. Chem. Phys. 2020, 152, 184107.10.1063/5.0004635. PubMed DOI PMC