Two Players in the Field: Hierarchical Model of Interaction between the Dopamine and Acetylcholine Signaling Systems in the Striatum

. 2021 Jan 01 ; 9 (1) : . [epub] 20210101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33401461

Grantová podpora
PROGRES Q25/LF1/2 Univerzita Karlova v Praze
PROGRES Q35/LF1/2 Univerzita Karlova v Praze

Odkazy

PubMed 33401461
PubMed Central PMC7824505
DOI 10.3390/biomedicines9010025
PII: biomedicines9010025
Knihovny.cz E-zdroje

Tight interactions exist between dopamine and acetylcholine signaling in the striatum. Dopaminergic neurons express muscarinic and nicotinic receptors, and cholinergic interneurons express dopamine receptors. All neurons in the striatum are pacemakers. An increase in dopamine release is activated by stopping acetylcholine release. The coordinated timing or synchrony of the direct and indirect pathways is critical for refined movements. Changes in neurotransmitter ratios are considered a prominent factor in Parkinson's disease. In general, drugs increase striatal dopamine release, and others can potentiate both dopamine and acetylcholine release. Both neurotransmitters and their receptors show diurnal variations. Recently, it was observed that reward function is modulated by the circadian system, and behavioral changes (hyperactivity and hypoactivity during the light and dark phases, respectively) are present in an animal model of Parkinson's disease. The striatum is one of the key structures responsible for increased locomotion in the active (dark) period in mice lacking M4 muscarinic receptors. Thus, we propose here a hierarchical model of the interaction between dopamine and acetylcholine signaling systems in the striatum. The basis of this model is their functional morphology. The next highest mode of interaction between these two neurotransmitter systems is their interaction at the neurotransmitter/receptor/signaling level. Furthermore, these interactions contribute to locomotor activity regulation and reward behavior, and the topmost level of interaction represents their biological rhythmicity.

Zobrazit více v PubMed

McCutcheon R.A., Abi-Dargham A., Howes O.D. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019;42:205–220. doi: 10.1016/j.tins.2018.12.004. PubMed DOI PMC

Myslivecek J., Farar V., Valuskova P. M(4) muscarinic receptors and locomotor activity regulation. Physiol. Res. 2017;66:S443–S455. doi: 10.33549/physiolres.933796. PubMed DOI

Yager L.M., Garcia A.F., Wunsch A.M., Ferguson S.M. The ins and outs of the striatum: Role in drug addiction. Neuroscience. 2015;301:529–541. doi: 10.1016/j.neuroscience.2015.06.033. PubMed DOI PMC

Clos M., Bunzeck N., Sommer T. Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology. 2019;44:555–563. doi: 10.1038/s41386-018-0246-y. PubMed DOI PMC

Lloyd K., Dayan P. Safety out of control: Dopamine and defence. Behav. Brain Funct. 2016;12:1–23. doi: 10.1186/s12993-016-0099-7. PubMed DOI PMC

Valjent E., Gangarossa G. The Tail of the Striatum: From Anatomy to Connectivity and Function. Trends Neurosci. 2021;44 doi: 10.1016/j.tins.2020.10.016. PubMed DOI

Jaušovec N. The neural code of intelligence: From correlation to causation. Phys. Life Rev. 2019;31:171–187. doi: 10.1016/j.plrev.2019.10.005. PubMed DOI

Jabourian M., Venance L., Bourgoin S., Ozon S., Pérez S., Godeheu G., Glowinski J., Kemel M.-L. Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: Territorial specificity and diurnal variation. Eur. J. Neurosci. 2005;21:3301–3309. doi: 10.1111/j.1460-9568.2005.04154.x. PubMed DOI

Saga Y., Hoshi E., Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front. Neuroanat. 2017;11 doi: 10.3389/fnana.2017.00030. PubMed DOI PMC

Aosaki T., Miura M., Suzuki T., Nishimura K., Masuda M. Acetylcholine–dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int. 2010;10:S148–S157. doi: 10.1111/j.1447-0594.2010.00588.x. PubMed DOI

Tanimura A., Pancani T., Lim S.A.O., Tubert C., Melendez A.E., Shen W., Surmeier D.J. Striatal cholinergic interneurons and Parkinson’s disease. Eur. J. Neurosci. 2018;47:1148–1158. doi: 10.1111/ejn.13638. PubMed DOI PMC

Pancani T., Foster D.J., Moehle M.S., Bichell T.J., Bradley E., Bridges T.M., Klar R., Poslusney M., Rook J.M., Daniels J.S., et al. Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proc. Natl. Acad. Sci. USA. 2015;112:14078–14083. doi: 10.1073/pnas.1512812112. PubMed DOI PMC

Farar V., Mohr F., Legrand M., d’Incamps B.L., Cendelin J., Leroy J., Abitbol M., Bernard V., Baud F., Fournet V., et al. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 2012;122:1065–1080. doi: 10.1111/j.1471-4159.2012.07856.x. PubMed DOI

Esterlis I., Hannestad J.O., Bois F., Sewell R.A., Tyndale R.F., Seibyl J.P., Picciotto M.R., Laruelle M., Carson R.E., Cosgrove K.P. Imaging changes in synaptic acetylcholine availability in living human subjects. J. Nucl. Med. 2013;54:78–82. doi: 10.2967/jnumed.112.111922. PubMed DOI PMC

Lane T.A., Boerner T., Bannerman D.M., Kew J.N., Tunbridge E.M., Sharp T., Harrison P.J. Decreased striatal dopamine in group II metabotropic glutamate receptor (mGlu2/mGlu3) double knockout mice. BMC Neurosci. 2013;14:102. doi: 10.1186/1471-2202-14-102. PubMed DOI PMC

Gatica R.I., Aguilar-Rivera M.Í., Azocar V.H., Fuentealba J.A. Individual Differences in Amphetamine Locomotor Sensitization are Accompanied with Changes in Dopamine Release and Firing Pattern in the Dorsolateral Striatum of Rats. Neuroscience. 2020;427:116–126. doi: 10.1016/j.neuroscience.2019.11.048. PubMed DOI

Nutt D.J., Lingford-Hughes A., Erritzoe D., Stokes P.R.A. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 2015;16:305–312. doi: 10.1038/nrn3939. PubMed DOI

Li W., Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J. Neurosci. Res. 2020;98:2130–2147. doi: 10.1002/jnr.24560. PubMed DOI PMC

Foster D.J., Gentry P.R., Lizardi-Ortiz J.E., Bridges T.M., Wood M.R., Niswender C.M., Sulzer D., Lindsley C.W., Xiang Z., Conn P.J. M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor’s location. J. Neurosci. 2014;34:3253–3262. doi: 10.1523/JNEUROSCI.4896-13.2014. PubMed DOI PMC

Gomeza J., Zhang L., Kostenis E., Felder C.C., Bymaster F.P., Brodkin J., Shannon H., Xia B., Duttaroy A., Deng C.X., et al. Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci. 2001;68:2457–2466. doi: 10.1016/S0024-3205(01)01039-6. PubMed DOI

Chambers N.E., Meadows S.M., Taylor A., Sheena E., Lanza K., Conti M.M., Bishop C. Effects of Muscarinic Acetylcholine m1 and m4 Receptor Blockade on Dyskinesia in the Hemi-Parkinsonian Rat. Neuroscience. 2019 doi: 10.1016/j.neuroscience.2019.04.008. PubMed DOI

Jeon J., Dencker D., Wörtwein G., Woldbye D.P.D., Cui Y., Davis A.A., Levey A.I., Schütz G., Sager T.N., Mørk A., et al. A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors. J. Neurosci. 2010;30:2396–2405. doi: 10.1523/JNEUROSCI.3843-09.2010. PubMed DOI PMC

Nair A.G., Castro L.R.V., El Khoury M., Gorgievski V., Giros B., Tzavara E.T., Hellgren-Kotaleski J., Vincent P. The high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergia. Neuropharmacology. 2019;146:74–83. doi: 10.1016/j.neuropharm.2018.11.029. PubMed DOI

Thomsen M., Woldbye D.P., Wortwein G., Fink-Jensen A., Wess J., Caine S.B. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J. Neurosci. 2005;25:8141–8149. doi: 10.1523/JNEUROSCI.2077-05.2005. PubMed DOI PMC

Ztaou S., Maurice N., Camon J., Guiraudie-Capraz G., Kerkerian-Le Goff L., Beurrier C., Liberge M., Amalric M. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson’s Disease. J. Neurosci. 2016;36:9161–9172. doi: 10.1523/JNEUROSCI.0873-16.2016. PubMed DOI PMC

Narushima M., Uchigashima M., Fukaya M., Matsui M., Manabe T., Hashimoto K., Watanabe M., Kano M. Tonic Enhancement of Endocannabinoid-Mediated Retrograde Suppression of Inhibition by Cholinergic Interneuron Activity in the Striatum. J. Neurosci. 2007;27:496–506. doi: 10.1523/JNEUROSCI.4644-06.2007. PubMed DOI PMC

Surmeier D.J., Mercer J.N., Chan C.S. Autonomous pacemakers in the basal ganglia: Who needs excitatory synapses anyway? Curr. Opin. Neurobiol. 2005;15:312–318. doi: 10.1016/j.conb.2005.05.007. PubMed DOI

Kawaguchi Y., Wilson C., Emson P. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 1990;10:3421–3438. doi: 10.1523/JNEUROSCI.10-10-03421.1990. PubMed DOI PMC

Shin J.H., Adrover M.F., Wess J., Alvarez V.A. Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc. Natl. Acad. Sci. USA. 2015 doi: 10.1073/pnas.1508846112. PubMed DOI PMC

Moehle M.S., Pancani T., Byun N., Yohn S.E., Wilson Iii G.H., Dickerson J.W., Remke D.H., Xiang Z., Niswender C.M., Wess J., et al. Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M4 Muscarinic Receptor. Neuron. 2017;96:1358–1372.e1354. doi: 10.1016/j.neuron.2017.12.008. PubMed DOI PMC

Garção P., Szabó E.C., Wopereis S., Castro A.A., Tomé Â.R., Prediger R.D., Cunha R.A., Agostinho P., Köfalvi A. Functional interaction between presynaptic α6β2-containing nicotinic and adenosine A2A receptors in the control of dopamine release in the rat striatum. Br. J. Pharm. 2013 doi: 10.1111/bph.12234. PubMed DOI PMC

Marks M.J., Grady S.R., Salminen O., Paley M.A., Wageman C.R., McIntosh J.M., Whiteaker P. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration. J. Neurochem. 2014;130:185–198. doi: 10.1111/jnc.12721. PubMed DOI PMC

Soll L.G., Grady S.R., Salminen O., Marks M.J., Tapper A.R. A role for α4(non-α6)* nicotinic acetylcholine receptors in motor behavior. Neuropharmacology. 2013 doi: 10.1016/j.neuropharm.2013.05.001. PubMed DOI PMC

Ikeda E., Matsunaga N., Kakimoto K., Hamamura K., Hayashi A., Koyanagi S., Ohdo S. Molecular mechanism regulating 24-hour rhythm of dopamine D3 receptor expression in mouse ventral striatum. Mol. Pharm. 2013;83:959–967. doi: 10.1124/mol.112.083535. PubMed DOI

Coffey K.R., Nader M., Bawa J., West M.O. Homogeneous processing in the striatal direct and indirect pathways: Single body part sensitive type IIb neurons may express either dopamine receptor D1 or D2. Eur. J. Neurosci. 2017;46:2380–2391. doi: 10.1111/ejn.13690. PubMed DOI PMC

Gatev P., Darbin O., Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov. Disord. 2006;21:1566–1577. doi: 10.1002/mds.21033. PubMed DOI

Kravitz A.V., Freeze B.S., Parker P.R.L., Kay K., Thwin M.T., Deisseroth K., Kreitzer A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466:622–626. doi: 10.1038/nature09159. PubMed DOI PMC

Moehle M.S., Conn P.J. Roles of the M4 acetylcholine receptor in the basal ganglia and the treatment of movement disorders. Mov. Disord. 2019;34:1089–1099. doi: 10.1002/mds.27740. PubMed DOI PMC

Suzuki E., Momiyama T. M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons. Eur. J. Neurosci. 2021 doi: 10.1111/ejn.15074. PubMed DOI

Koranda J.L., Cone J.J., McGehee D.S., Roitman M.F., Beeler J.A., Zhuang X. Nicotinic Receptors Regulate the Dynamic Range of Dopamine Release in Vivo. J. Neurophysiol. 2014;111:103–111. doi: 10.1152/jn.00269.2013. PubMed DOI PMC

Kljakic O., Janickova H., Prado V.F., Prado M.A.M. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: New mechanisms regulating striatal computation. J. Neurochem. 2017;142:90–102. doi: 10.1111/jnc.14003. PubMed DOI

Klein M.O., Battagello D.S., Cardoso A.R., Hauser D.N., Bittencourt J.C., Correa R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell. Mol. Neurobiol. 2019;39:31–59. doi: 10.1007/s10571-018-0632-3. PubMed DOI

Ztaou S., Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson’s disease. Neurochem. Int. 2019;126:1–10. doi: 10.1016/j.neuint.2019.02.019. PubMed DOI

Zoli M., Torri C., Ferrari R., Jansson A., Zini I., Fuxe K., Agnati L.F. The emergence of the volume transmission concept. Brain Res. Rev. 1998;26:136–147. doi: 10.1016/S0165-0173(97)00048-9. PubMed DOI

Guzman M.S., De Jaeger X., Raulic S., Souza I.A., Li A.X., Schmid S., Menon R.S., Gainetdinov R.R., Caron M.G., Bartha R., et al. Elimination of the Vesicular Acetylcholine Transporter in the Striatum Reveals Regulation of Behaviour by Cholinergic-Glutamatergic Co-Transmission. PLoS Biol. 2011;9:e1001194. doi: 10.1371/journal.pbio.1001194. PubMed DOI PMC

Villalba R.M., Smith Y. Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: A key role of dopamine? Neuroscience. 2013;251:2–20. doi: 10.1016/j.neuroscience.2013.07.011. PubMed DOI PMC

Day J., Damsma G., Fibiger H.C. Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity: An in vivo microdialysis study. Pharm. Biochem. Behav. 1991;38:723–729. doi: 10.1016/0091-3057(91)90233-R. PubMed DOI

Sun Z., Jia J., Gong X., Jia Y., Deng J., Wang X., Wang X. Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in parkinsonian rats. Neurosci. Lett. 2012;520:32–37. doi: 10.1016/j.neulet.2012.05.021. PubMed DOI

Creed R.B., Menalled L., Casey B., Dave K.D., Janssens H.B., Veinbergs I., van der Hart M., Rassoulpour A., Goldberg M.S. Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum. Neuroscience. 2019;409:169–179. doi: 10.1016/j.neuroscience.2019.04.033. PubMed DOI PMC

Jamwal S., Kumar P. Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson’s Disease and Huntington’s Disease: A Review. Curr. Neuropharmacol. 2019;17:165–175. doi: 10.2174/1570159X16666180302115032. PubMed DOI PMC

Avena N.M., Rada P.V. Cholinergic modulation of food and drug satiety and withdrawal. Physiol. Behav. 2012;106:332–336. doi: 10.1016/j.physbeh.2012.03.020. PubMed DOI PMC

Brami-Cherrier K., Lewis R.G., Cervantes M., Liu Y., Tognini P., Baldi P., Sassone-Corsi P., Borrelli E. Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation. Nat. Commun. 2020;11:4448. doi: 10.1038/s41467-020-18200-6. PubMed DOI PMC

Kim M., Custodio R.J., Botanas C.J., de la Pena J.B., Sayson L.V., Abiero A., Ryoo Z.Y., Cheong J.H., Kim H.J. The circadian gene, Per2, influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice. Addict. Biol. 2019;24:946–957. doi: 10.1111/adb.12663. PubMed DOI

Kawaguchi H., Obata T., Takano H., Nogami T., Suhara T., Ito H. Relation between dopamine synthesis capacity and cell-level structure in human striatum: A multi-modal study with positron emission tomography and diffusion tensor imaging. PLoS ONE. 2014;9:e87886. doi: 10.1371/journal.pone.0087886. PubMed DOI PMC

Ruppert M.C., Greuel A., Tahmasian M., Schwartz F., Stürmer S., Maier F., Hammes J., Tittgemeyer M., Timmermann L., van Eimeren T., et al. Network degeneration in Parkinson’s disease: Multimodal imaging of nigro-striato-cortical dysfunction. Brain. 2020;143:944–959. doi: 10.1093/brain/awaa019. PubMed DOI

Laverty R., Michaelson I.A., Sharman D.F., Whittaker V.P. The subcellular localization of dopamine and acetylcholine in the dog caudate nucleus. Br. J. Pharm. Chemother. 1963;21:482–490. doi: 10.1111/j.1476-5381.1963.tb02016.x. PubMed DOI PMC

Snyder S.H., Bennett J.P., Jr. Neurotransmitter Receptors in the Brain: Biochemical Identification. Annu. Rev. Physiol. 1976;38:153–175. doi: 10.1146/annurev.ph.38.030176.001101. PubMed DOI

Reisine T.D., Fields J.Z., Yamamura H.I., Bird E.D., Spokes E., Schreiner P.S., Enna S.J. Neurotransmitter receptor alterations in Parkinson’s disease. Life Sci. 1977;21:335–343. doi: 10.1016/0024-3205(77)90514-8. PubMed DOI

Weiner D.M., Levey A.I., Brann M.R. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. USA. 1990;87:7050–7054. doi: 10.1073/pnas.87.18.7050. PubMed DOI PMC

Bernard V., Normand E., Bloch B. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J. Neurosci. Off. J. Soc. Neurosci. 1992;12:3591–3600. doi: 10.1523/JNEUROSCI.12-09-03591.1992. PubMed DOI PMC

Gomeza J., Zhang L., Kostenis E., Felder C., Bymaster F., Brodkin J., Shannon H., Xia B., Deng C.-x., Wess J. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. USA. 1999;96:10483–10488. doi: 10.1073/pnas.96.18.10483. PubMed DOI PMC

Mayorga A.J., Gianutsos G., Salamone J.D. Effects of striatal injections of 8-bromo-cyclic-AMP on pilocarpine-induced tremulous jaw movements in rats. Brain Res. 1999;829:180–184. doi: 10.1016/S0006-8993(99)01352-9. PubMed DOI

Gerber D.J., Sotnikova T.D., Gainetdinov R.R., Huang S.Y., Caron M.G., Tonegawa S. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl. Acad. Sci. USA. 2001;98:15312–15317. doi: 10.1073/pnas.261583798. PubMed DOI PMC

Zhang W., Yamada M., Gomeza J., Basile A.S., Wess J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J. Neurosci. 2002;22:6347–6352. doi: 10.1523/JNEUROSCI.22-15-06347.2002. PubMed DOI PMC

Surmeier D.J., Ding J., Day M., Wang Z., Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007;30:228–235. doi: 10.1016/j.tins.2007.03.008. PubMed DOI

Threlfell S., Clements M.A., Khodai T., Pienaar I.S., Exley R., Wess J., Cragg S.J. Striatal Muscarinic Receptors Promote Activity Dependence of Dopamine Transmission via Distinct Receptor Subtypes on Cholinergic Interneurons in Ventral versus Dorsal Striatum. J. Neurosci. 2010;30:3398–3408. doi: 10.1523/JNEUROSCI.5620-09.2010. PubMed DOI PMC

Yokoi F., Oleas J., Xing H., Liu Y., Dexter K.M., Misztal C., Gerard M., Efimenko I., Lynch P., Villanueva M., et al. Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice. Neurobiol. Dis. 2020;134:104638. doi: 10.1016/j.nbd.2019.104638. PubMed DOI PMC

Patel J.C., Rossignol E., Rice M.E., Machold R.P. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat. Commun. 2012;3:1172. doi: 10.1038/ncomms2144. PubMed DOI PMC

Hernández-Flores T., Hernández-González O., Pérez-Ramírez M.B., Lara-González E., Arias-García M.A., Duhne M., Pérez-Burgos A., Prieto G.A., Figueroa A., Galarraga E., et al. Modulation of direct pathway striatal projection neurons by muscarinic M4-type receptors. Neuropharmacology. 2014 doi: 10.1016/j.neuropharm.2014.09.028. PubMed DOI

Crittenden J.R., Lacey C.J., Lee T., Bowden H.A., Graybiel A.M. Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Front. Neural Circuits. 2014;8 doi: 10.3389/fncir.2014.00057. PubMed DOI PMC

Laplante F., Lappi D.A., Sullivan R.M. Cholinergic depletion in the nucleus accumbens: Effects on amphetamine response and sensorimotor gating. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011;35:501–509. doi: 10.1016/j.pnpbp.2010.12.005. PubMed DOI

Karasawa H., Taketo M.M., Matsui M. Loss of anti-cataleptic effect of scopolamine in mice lacking muscarinic acetylcholine receptor subtype 4. Eur. J. Pharm. 2003;468:15–19. doi: 10.1016/S0014-2999(03)01642-X. PubMed DOI

Nestby P., Vanderschuren L.J.M.J., De Vries T.J., Hogenboom F., Wardeh G., Mulder A.H., Schoffelmeer A.N.M. Ethanol, like psychostimulants and morphine, causes long-lasting hyperreactivity of dopamine and acetylcholine neurons of rat nucleus accumbens: Possible role in behavioural sensitization. Psychopharmacology. 1997;133:69–76. doi: 10.1007/s002130050373. PubMed DOI

Hikida T., Kaneko S., Isobe T., Kitabatake Y., Watanabe D., Pastan I., Nakanishi S. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc. Natl. Acad. Sci. USA. 2001;98:13351–13354. doi: 10.1073/pnas.231488998. PubMed DOI PMC

Fink-Jensen A., Schmidt L.S., Dencker D., Schülein C., Wess J., Wörtwein G., Woldbye D.P.D. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor. Eur. J. Pharm. 2011;656:39–44. doi: 10.1016/j.ejphar.2011.01.018. PubMed DOI PMC

Dencker D., Weikop P., Sorensen G., Woldbye D.P., Wortwein G., Wess J., Fink-Jensen A. An allosteric enhancer of M(4) muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine. Psychopharmacology. 2012;224:277–287. doi: 10.1007/s00213-012-2751-8. PubMed DOI PMC

Wang W., Darvas M., Storey G.P., Bamford I.J., Gibbs J.T., Palmiter R.D., Bamford N.S. Acetylcholine encodes long-lasting presynaptic plasticity at glutamatergic synapses in the dorsal striatum after repeated amphetamine exposure. J. Neurosci. 2013;33:10405–10426. doi: 10.1523/JNEUROSCI.0014-13.2013. PubMed DOI PMC

Acevedo-Rodriguez A., Zhang L., Zhou F., Gong S., Gu H., De Biasi M., Zhou F.-M., Dani J.A. Cocaine Inhibition of Nicotinic Acetylcholine Receptors Influences Dopamine Release. Front. Synaptic Neurosci. 2014;6:19. doi: 10.3389/fnsyn.2014.00019. PubMed DOI PMC

de Kloet S.F., Mansvelder H.D., De Vries T.J. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem. Pharm. 2015;97:425–438. doi: 10.1016/j.bcp.2015.07.014. PubMed DOI

Xu W., Jain M.K., Zhang L. Molecular link between circadian clocks and cardiac function: A network of core clock, slave clock, and effectors. Curr. Opin. Pharm. 2021;57:28–40. doi: 10.1016/j.coph.2020.10.006. PubMed DOI PMC

Chartove J.A.K., McCarthy M.M., Pittman-Polletta B.R., Kopell N.J. A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control. PLoS Comput. Biol. 2020;16:e1007300. doi: 10.1371/journal.pcbi.1007300. PubMed DOI PMC

Ballesta A., Innominato P.F., Dallmann R., Rand D.A., Lévi F.A. Systems Chronotherapeutics. Pharm. Rev. 2017;69:161–199. doi: 10.1124/pr.116.013441. PubMed DOI PMC

Dluzen D., Ramirez V.D. In vitro dopamine release from the rat striatum: Diurnal rhythm and its modification by the estrous cycle. Neuroendocrinology. 1985;41:97–100. doi: 10.1159/000124160. PubMed DOI

Nowak J.Z., Zurawska E. Dopamine in the rabbit retina and striatum: Diurnal rhythm and effect of light stimulation. J. Neural Transm. 1989;75:201–212. doi: 10.1007/BF01258631. PubMed DOI

Doi M., Yujnovsky I., Hirayama J., Malerba M., Tirotta E., Sassone-Corsi P., Borrelli E. Impaired light masking in dopamine D2 receptor–null mice. Nat. Neurosci. 2006;9:732–734. doi: 10.1038/nn1711. PubMed DOI

Imbesi M., Yildiz S., Dirim Arslan A., Sharma R., Manev H., Uz T. Dopamine receptor-mediated regulation of neuronal “clock” gene expression. Neuroscience. 2009;158:537–544. doi: 10.1016/j.neuroscience.2008.10.044. PubMed DOI PMC

Hood S., Cassidy P., Cossette M.P., Weigl Y., Verwey M., Robinson B., Stewart J., Amir S. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 2010;30:14046–14058. doi: 10.1523/JNEUROSCI.2128-10.2010. PubMed DOI PMC

Naber D., Wirz-Justice A., Kafka M.S., Wehr T.A. Dopamine receptor binding in rat striatum: Ultradian rhythm and its modification by chronic imipramine. Psychopharmacology. 1980;68:1–5. doi: 10.1007/BF00426642. PubMed DOI

Wirz-Justice A., Tobler I., Kafka M.S., Naber D., Marangos P.J., Borbély A.A., Wehr T.A. Sleep deprivation: Effects on circadian rhythms of rat brain neurotransmitter receptors. Psychiatry Res. 1981;5:67–76. doi: 10.1016/0165-1781(81)90062-7. PubMed DOI

Naber D., Wirz-Justice A., Kafka M.S., Tobler I., Borbély A.A. Seasonal variations in the endogenous rhythm of dopamine receptor binding in rat striatum. Biol. Psychiatry. 1981;16:831–835. PubMed

Byrne J.E.M., Tremain H., Leitan N.D., Keating C., Johnson S.L., Murray G. Circadian modulation of human reward function: Is there an evidentiary signal in existing neuroimaging studies? Neurosci. Biobehav. Rev. 2019;99:251–274. doi: 10.1016/j.neubiorev.2019.01.025. PubMed DOI

Requejo C., López-de-Ipiña K., Ruiz-Ortega J.Á., Fernández E., Calvo P.M., Morera-Herreras T., Miguelez C., Cardona-Grifoll L., Cepeda H., Ugedo L., et al. Changes in Day/Night Activity in the 6-OHDA-Induced Experimental Model of Parkinson’s Disease: Exploring Prodromal Biomarkers. Front. Neurosci. 2020;14 doi: 10.3389/fnins.2020.590029. PubMed DOI PMC

Friedman A.H., Walker C.A. The acute toxicity of drugs acting at cholinoceptive sites and twenty-four hour rhythms in brain acetylcholine. Arch. Toxikol. 1972;29:39–49. doi: 10.1007/BF00316513. PubMed DOI

Jabourian M., Bourgoin S., Pérez S., Godeheu G., Glowinski J., Kemel M.L. μ opioid control of the N-methyl-d-aspartate-evoked release of [3h]-acetylcholine in the limbic territory of the rat striatum in vitro: Diurnal variations and implication of a dopamine link. Neuroscience. 2004;123:733–742. doi: 10.1016/j.neuroscience.2003.10.017. PubMed DOI

Jabourian M., Pérez S., Ezan P., Glowinski J., Deniau J.-M., Kemel M.-L. Impact of 6-hydroxydopamine lesions and cocaine exposure on µ-opioid receptor expression and regulation of cholinergic transmission in the limbic–prefrontal territory of the rat dorsal striatum. Eur. J. Neurosci. 2007;25:1546–1556. doi: 10.1111/j.1460-9568.2007.05375.x. PubMed DOI

Divito C.B., Steece-Collier K., Case D.T., Williams S.-P.G., Stancati J.A., Zhi L., Rubio M.E., Sortwell C.E., Collier T.J., Sulzer D., et al. Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson’s Disease. J. Neurosci. 2015;35:14983–14999. doi: 10.1523/JNEUROSCI.2124-15.2015. PubMed DOI PMC

Kondabolu K., Roberts E.A., Bucklin M., McCarthy M.M., Kopell N., Han X. Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits. Proc. Natl. Acad. Sci. USA. 2016;113:E3159–E3168. doi: 10.1073/pnas.1605658113. PubMed DOI PMC

Por S., Bondy S. Regional circadian variation of acetylcholine muscarinic receptors in the rat brain. J. Neurosci. Res. 1981;6:315–318. doi: 10.1002/jnr.490060306. PubMed DOI

Pan S.Y. Circadian effects of scopolamine on memory, exploratory behavior, and muscarinic receptors in mouse brain. Zhongguo Yao Li Xue Bao. 1992;13:323–326. PubMed

Riljak V., Janisova K., Myslivecek J. Lack of M4 muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice. Brain Struct. Funct. 2020;225:1615–1629. doi: 10.1007/s00429-020-02082-x. PubMed DOI PMC

Valuskova P., Riljak V., Forczek S.T., Farar V., Myslivecek J. Variability in the Drug Response of M4 Muscarinic Receptor Knockout Mice during Day and Night Time. Front. Pharm. 2019;10 doi: 10.3389/fphar.2019.00237. PubMed DOI PMC

Sharma A., Lee S., Kim H., Yoon H., Ha S., Kang S.U. Molecular Crosstalk between Circadian Rhythmicity and the Development of Neurodegenerative Disorders. Front. Neurosci. 2020;14 doi: 10.3389/fnins.2020.00844. PubMed DOI PMC

Gillman A.G., Rebec G.V., Pecoraro N.C., Kosobud A.E.K. Circadian entrainment by food and drugs of abuse. Behav. Process. 2019;165:23–28. doi: 10.1016/j.beproc.2019.05.017. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...