Lack of M4 muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice

. 2020 Jun ; 225 (5) : 1615-1629. [epub] 20200514

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32409918

Grantová podpora
17-03847S Grantová Agentura České Republiky (CZ)
PROGRES Q25/LF1/2 Charles University
PROGRES Q35/LF1/2 Charles University

Odkazy

PubMed 32409918
PubMed Central PMC7286859
DOI 10.1007/s00429-020-02082-x
PII: 10.1007/s00429-020-02082-x
Knihovny.cz E-zdroje

The deletion of M4 muscarinic receptors (MRs) changes biological rhythm parameters in females. Here, we searched for the mechanisms responsible for these changes. We performed biological rhythm analysis in two experiments: in experiment 1, the mice [C57Bl/6NTac (WT) and M4 MR -/- mice (KO)] were first exposed to a standard LD regime (12/12-h light/dark cycle) for 8 days and then subsequently exposed to constant darkness (for 24 h/day, DD regime) for another 16 days. In experiment 2, the mice (after the standard LD regime) were exposed to the DD regime and to one light pulse (zeitgeber time 14) on day 9. We also detected M1 MRs in brain areas implicated in locomotor biological rhythm regulation. In experiment 1, the biological rhythm activity curves differed: the period (τ, duration of diurnal cycle) was shorter in the DD regime. Moreover, the day mean, mesor (midline value), night mean and their difference were higher in KO animals. The time in which the maximal slope occurred was lower in the DD regime than in the LD regime in both WT and KO but was lower in KO than in WT mice. In experiment 2, there were no differences in biological rhythm parameters between WT and KO mice. The densities of M1 MRs in the majority of areas implicated in locomotor biological rhythm were low. A significant amount of M1 MR was found in the striatum. These results suggest that although core clock output is changed by M4 MR deletion, the structures involved in biological rhythm regulation in WT and KO animals are likely the same, and the most important areas are the striatum, thalamus and intergeniculate leaflet.

Zobrazit více v PubMed

Abbott SM, Arnold JM, Chang Q, Miao H, Ota N, Cecala C, Gold PE, Sweedler JV, Gillette MU. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock. PLoS ONE. 2013;8(8):e70481. doi: 10.1371/journal.pone.0070481. PubMed DOI PMC

Abrahamson EE, Moore RY. Lesions of suprachiasmatic nucleus efferents selectively affect rest-activity rhythm. Mol Cell Endocrinol. 2006;252(1–2):46–56. doi: 10.1016/j.mce.2006.03.036. PubMed DOI

Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:11–28. doi: 10.1101/sqb.1960.025.01.004. PubMed DOI

Ballesta A, Innominato PF, Dallmann R, Rand DA, Lévi FA. Systems chronotherapeutics. Pharmacol Rev. 2017;69(2):161–199. doi: 10.1124/pr.116.013441. PubMed DOI PMC

Basu P, Wensel AL, McKibbon R, Lefebvre N, Antle MC. Activation of M1/4 receptors phase advances the hamster circadian clock during the day. Neurosci Lett. 2016;621:22–27. doi: 10.1016/j.neulet.2016.04.012. PubMed DOI

Bina KG, Rusak B. Muscarinic receptors mediate carbachol-induced phase shifts of circadian activity rhythms in Syrian hamsters. Brain Res. 1996;743(1–2):202–211. doi: 10.1016/S0006-8993(96)01043-8. PubMed DOI

Bina KG, Rusak B, Semba K. Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J Comp Neurol. 1993;335(2):295–307. doi: 10.1002/cne.903350212. PubMed DOI

Bina KG, Rusak B, Wilkinson M. Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Res. 1998;797(1):143–153. doi: 10.1016/S0006-8993(98)00374-6. PubMed DOI

Blattner MS, Mahoney MM. Photic phase-response curve in 2 strains of mice with impaired responsiveness to estrogens. J Biol Rhythms. 2013;28(4):291–300. doi: 10.1177/0748730413497190. PubMed DOI

Blizard DA, Lippman HR, Chen JJ. Sex differences in open-field behavior in the rat: the inductive and activational role of gonadal hormones. Physiol Behav. 1975;14(5):601–608. doi: 10.1016/0031-9384(75)90188-2. PubMed DOI

Buchanan GF, Gillette MU. New light on an old paradox: site-dependent effects of carbachol on circadian rhythms. Exp Neurol. 2005;193(2):489–496. doi: 10.1016/j.expneurol.2005.01.008. PubMed DOI

Cain SW, Verwey M, Szybowska M, Ralph MR, Yeomans JS. Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res. 2007;1177:59–65. doi: 10.1016/j.brainres.2007.07.048. PubMed DOI

Casini A, Vaccaro R, Toni M, Cioni C. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the teleost Cyprinus carpio. Eur J Histochem EJH. 2018 doi: 10.4081/ejh.2018.2932. PubMed DOI PMC

Castillo-Ruiz A, Nunez AA. Cholinergic projections to the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Brain Res. 2007;1151:91–101. doi: 10.1016/j.brainres.2007.03.010. PubMed DOI

Felder CC, Goldsmith PJ, Jackson K, Sanger HE, Evans DA, Mogg AJ, Broad LM. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology. 2018;136:449–458. doi: 10.1016/j.neuropharm.2018.01.028. PubMed DOI

Fink-Jensen A, Schmidt LS, Dencker D, Schülein C, Wess J, Wörtwein G, Woldbye DPD. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor. Eur J Pharmacol. 2011;656(1–3):39–44. doi: 10.1016/j.ejphar.2011.01.018. PubMed DOI PMC

Furukawa T, Murakami N, Takahashi K, Etoh T. Effect of implantation of carbachol pellet near the suprachiasmatic nucleus on the free-running period of rat locomotor activity rhythm. Jpn J Physiol. 1987;37(2):321–326. doi: 10.2170/jjphysiol.37.321. PubMed DOI

Gannon RL, Millan MJ. LY2033298, a positive allosteric modulator at muscarinic M4 receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms. Psychopharmacology. 2012;224(2):231–240. doi: 10.1007/s00213-012-2743-8. PubMed DOI

Gillette MU, Buchanan GF, Artinian L, Hamilton SE, Nathanson NM, Liu C. Role of the M1 receptor in regulating circadian rhythms. Life Sci. 2001;68(22–23):2467–2472. doi: 10.1016/S0024-3205(01)01040-2. PubMed DOI

Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C-x, Wess J. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci. 1999;96(18):10483–10488. doi: 10.1073/pnas.96.18.10483. PubMed DOI PMC

Hughes ATL, Piggins HD (2012) Chapter 18—Feedback actions of locomotor activity to the circadian clock. In: Andries Kalsbeek MMTR, Russell GF (eds) Progress in brain research, vol 199. Elsevier, Amsterdam, pp 305–336. 10.1016/B978-0-444-59427-3.00018-6 PubMed

Hut RA, Van der Zee EA. The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res. 2011;221(2):466–480. doi: 10.1016/j.bbr.2010.11.039. PubMed DOI

Ichikawa T, Hirata Y. Organization of choline acetyltransferase-containing structures in the forebrain of the rat. J Neurosci. 1986;6(1):281–292. doi: 10.1523/JNEUROSCI.06-01-00281.1986. PubMed DOI PMC

Kafka MS, Wirz-Justice A, Naber D, Moore RY, Benedito MA. Circadian rhythms in rat brain neurotransmitter receptors. Fed Proc. 1983;42(11):2796–2801. PubMed

Koshimizu H, Leiter L, Miyakawa T. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain. 2012;5(1):10. doi: 10.1186/1756-6606-5-10. PubMed DOI PMC

Kuljis DA, Loh DH, Truong D, Vosko AM, Ong ML, McClusky R, Arnold AP, Colwell CS. Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinology. 2013;154(4):1501–1512. doi: 10.1210/en.2012-1921. PubMed DOI PMC

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen T-M, Chi Chin M, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong H-W, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf K-R, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Feng Yuan X, Zhang B, Zwingman TA, Jones AR. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–176. doi: 10.1038/nature05453. PubMed DOI

Liu C, Gillette M. Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J Neurosci. 1996;16(2):744–751. doi: 10.1523/jneurosci.16-02-00744.1996. PubMed DOI PMC

Morgan MA, Pfaff DW. Effects of estrogen on activity and fear-related behaviors in mice. Horm Behav. 2001;40(4):472–482. doi: 10.1006/hbeh.2001.1716. PubMed DOI

Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol. 2013;243:4–20. doi: 10.1016/j.expneurol.2012.06.026. PubMed DOI PMC

Ogawa S, Chan J, Gustafsson J-A, Korach KS, Pfaff DW. Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity. Endocrinology. 2003;144:230–239. doi: 10.1210/en.2002-220519. PubMed DOI

Pancani T, Bolarinwa C, Smith Y, Lindsley CW, Conn PJ, Xiang Z. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS Chem Neurosci. 2014 doi: 10.1021/cn500003z. PubMed DOI PMC

Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. New York: Elsevier Academic Press; 2008.

Pekala D, Blasiak A, Lewandowski MH. The influence of carbachol on glutamate-induced activity of the intergeniculate leaflet neurons—in vitro studies. Brain Res. 2007;1186:95–101. doi: 10.1016/j.brainres.2007.10.028. PubMed DOI

Rusak B, Bina KG. Neurotransmitters in the mammalian circadian system. Annu Rev Neurosci. 1990;13:387–401. doi: 10.1146/annurev.ne.13.030190.002131. PubMed DOI

Satoh Y, Kawai H, Kudo N, Kawashima Y, Mitsumoto A. Temperature rhythm reentrains faster than locomotor rhythm after a light phase shift. Physiol Behav. 2006;88(4):404–410. doi: 10.1016/j.physbeh.2006.04.017. PubMed DOI

Segal M, Dudai Y, Amsterdam A. Distribution of an alpha-bungarotoxin-binding cholinergic nicotinic receptor in rat brain. Brain Res. 1978;148(1):105–119. doi: 10.1016/0006-8993(78)90381-5. PubMed DOI

Schmidt L, Thomsen M, Weikop P, Dencker D, Wess J, Woldbye DD, Wortwein G, Fink-Jensen A. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology. 2011;216(3):367–378. doi: 10.1007/s00213-011-2225-4. PubMed DOI PMC

Silver J, Billiar RB. An autoradiographic analysis of [3H]alpha-bungarotoxin distribution in the rat brain after intraventricular injection. J Cell Biol. 1976;71(3):956–963. doi: 10.1083/jcb.71.3.956. PubMed DOI PMC

Valuskova P, Farar V, Forczek S, Krizova I, Myslivecek J. Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in mouse brain regions: possible insights into M1, M2, and M4 muscarinic receptors distribution. Front Pharmacol. 2018 doi: 10.3389/fphar.2018.00124. PubMed DOI PMC

Valuskova P, Forczek ST, Farar V, Myslivecek J. The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase. Brain Behav. 2018;8(8):e01057. doi: 10.1002/brb3.1057. PubMed DOI PMC

Valuskova P, Riljak V, Forczek ST. Variability in the drug response of M4 muscarinic receptor knockout mice during day and night time. Front Pharmacol. 2019 doi: 10.3389/fphar.2019.00237. PubMed DOI PMC

van den Pol AN, Tsujimoto KL. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience. 1985;15(4):1049–1086. doi: 10.1016/0306-4522(85)90254-4. PubMed DOI

van der Zee EA, Streefland C, Strosberg AD, Schroder H, Luiten PG. Colocalization of muscarinic and nicotinic receptors in cholinoceptive neurons of the suprachiasmatic region in young and aged rats. Brain Res. 1991;542(2):348–352. doi: 10.1016/0006-8993(91)91590-w. PubMed DOI

Wirz-Justice A. Circadian rhythms in mammalian neurotransmitter receptors. Prog Neurobiol. 1987;29(3):219–259. doi: 10.1016/0301-0082(87)90022-0. PubMed DOI

Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol. 2009;603(1–3):147–149. doi: 10.1016/j.ejphar.2008.12.020. PubMed DOI

Wyartt C. Taking a big step towards understanding locomotion. Trends Neurosci. 2018;41(12):869–870. doi: 10.1016/j.tins.2018.09.010. PubMed DOI

Yang J-J, Wang Y-T, Cheng P-C, Kuo Y-J, Huang R-C. Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J Neurophysiol. 2010;103(3):1397–1409. doi: 10.1152/jn.00877.2009. PubMed DOI

Zatz M. Photoentrainment, pharmacology, and phase shifts of the circadian rhythm in the rat pineal. Fed Proc. 1979;38(12):2596–2601. PubMed

Zatz M, Brownstein MJ. Intraventricular carbachol mimics the effects of light on the circadian rhythm in the rat pineal gland. Science. 1979;203(4378):358–361. doi: 10.1126/science.32619. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace