Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29515448
PubMed Central
PMC5826229
DOI
10.3389/fphar.2018.00124
Knihovny.cz E-zdroje
- Klíčová slova
- 3H-AFDX-384, 3H-QNB, 3H-pirenzepine, M1 muscarinic receptor, M2 muscarinic receptor, M4 muscarinic receptor, autoradiography,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Autoradiography helps to determine the distribution and density of muscarinic receptor (MR) binding sites in the brain. However, it relies on the selectivity of radioligands toward their target. 3H-Pirenzepine is commonly believed to label predominantly M1MR, 3H-AFDX-384 is considered as M2MR selective ligand. Here we performed series of autoradiographies with 3H-AFDX-384 (2 nM), and 3H-pirenzepine (5 nM) in WT, M1KO, M2KO, and M4KO mice to address the ligand selectivity. Labeling with 3H-pirenzepine using M1KO, M2KO, and M4KO brain sections showed the high selectivity toward M1MR. Selectivity of 3H-AFDX-384 toward M2MR varies among brain regions and depends on individual MR subtype proportion. All binding sites in the medulla oblongata and pons, correspond to M2MR. In caudate putamen, nucleus accumbens and olfactory tubercle, 77.7, 74.2, and 74.6% of 3H-AFDX-384 binding sites, respectively, are represented by M4MR and M2MR constitute only a minor portion. In cortex and hippocampus, 3H-AFDX-384 labels almost similar amounts of M2MR and M4MR alongside significant amounts of non-M2/non-M4MR. In cortex, the proportion of 3H-AFDX-384 binding sites attributable to M2MR can be increased by blocking M4MR with MT3 toxin without affecting non-M4MR. PD102807, which is considered as a highly selective M4MR antagonist failed to improve the discrimination of M2MR. Autoradiography with 3H-QNB showed genotype specific loss of binding sites. IN CONCLUSION: while 3H-pirenzepine showed the high selectivity toward M1MR, 3H-AFDX-384 binding sites represent different populations of MR subtypes in a brain-region-specific manner. This finding has to be taken into account when interpreting the binding data.
1st Faculty of Medicine Institute of Physiology Charles University Prague Czechia
Institute of Experimental Botany Academy of Sciences of the Czech Republic Prague Czechia
Zobrazit více v PubMed
Aubert I., Cécyre D., Gauthier S., Quirion R. (1992). Characterization and autoradiographic distribution of [3H]AF-DX 384 binding to putative muscarinic M2 receptors in the rat brain. Eur. J. Pharmacol. 217, 173–184. 10.1016/0014-2999(92)90843-S PubMed DOI
Bodick N. C., Offen W. W., Shannon H. E., Satterwhite J., Lucas R., van Lier R., et al. . (1997). The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 11(Suppl. 4), S16–S22. PubMed
Bradley S. J., Bourgognon J., Sanger H. E., Verity N., Mogg A. J., White D. J., et al. . (2017). M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J. Clin. Invest. 127, 487–499. 10.1172/JCI87526 PubMed DOI PMC
Brady A. E., Jones C. K., Bridges T. M., Kennedy J. P., Thompson A. D., Heiman J. U., et al. . (2008). Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 327, 941–953. 10.1124/jpet.108.140350 PubMed DOI PMC
Buckley N. J., Bonner T. I., Brann M. R. (1988). Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 8, 4646–4652. PubMed PMC
Buckley N. J., Bonner T. I., Buckley C. M., Brann M. R. (1989). Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol. Pharmacol. 35, 469–476. PubMed
Buckley N. J., Burnstock G. (1986). Autoradiographic localization of peripheral M1 muscarinic receptors using [3H]pirenzepine. Brain Res. 375, 83–91. 10.1016/0006-8993(86)90961-3 PubMed DOI
Bymaster F. P., McKinzie D. L., Felder C. C., Wess J. (2003). Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem. Res. 28, 437–442. 10.1023/A:1022844517200 PubMed DOI
Castoldi A. F., Fitzgerald B., Manzo L., Tonini M., Costa L. G. (1991). Muscarinic M2 receptors in rat brain labeled with [3H] AF-DX 384. Res. Commun. Chem. Pathol. Pharmacol. 74, 371–374. PubMed
Cea-del Rio C. A., Lawrence J. J., Tricoire L., Erdelyi F., Szabo G., McBain C. J. (2010). M3 Muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J. Neurosci. 30, 6011–6024. 10.1523/JNEUROSCI.5040-09.2010 PubMed DOI PMC
Cortes R., Palacios J. M. (1986). Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies. Brain Res. 362, 227–238. 10.1016/0006-8993(86)90448-8 PubMed DOI
Dall C., Weikop P., Dencker D., Molander A. C., Conn P. J., Fink-Jensen A., et al. (2017). Wörtwein, G., and Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine. Drug Alcohol Depend 176, 154–161. 10.1016/j.drugalcdep.2017.03.014 PubMed DOI PMC
Dong G. Z., Kameyama K., Rinken A., Haga T. (1995). Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells. J. Pharmacol. Exp. Ther. 274, 378–384. PubMed
Dörje F., Wess J., Lambrecht G., Tacke R., Mutschler E., Brann M. R. (1991). Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 256, 727–733. PubMed
Eglen R. (2012). Overview of muscarinic receptor subtypes, in Muscarinic Receptors, eds Fryer A. D., Christopoulos A., Nathanson N. M. (Berlin; Heidelberg: Springer; ), 3–28.
Entzeroth M., Mayer N. (1990). Labeling of rat heart muscarinic receptors using the new M2 selective antagonist [3H]AF-DX 384. Biochem. Pharmacol. 40, 1674–1676. 10.1016/0006-2952(90)90473-X PubMed DOI
Farar V., Mohr F., Legrand M., d'Incamps B. L., Cendelin J., Leroy J., et al. . (2012). Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 122, 1065–1080. 10.1111/j.1471-4159.2012.07856.x PubMed DOI
Farar V., Myslivecek J. (2016). Autoradiography assessment of muscarinic receptors in the central nervous system, in Muscarinic Receptor: From Structure to Animal Models, eds Myslivecek J., Jakubik J. (New York, NY: Springer; ), 159–180.
Ferrari-Dileo G., Waelbroeck M., Mash D. C., Flynn D. D. (1994). Selective labeling and localization of the M4 (m4) muscarinic receptor subtype. Mol. Pharmacol. 46, 1028–1035. PubMed
Flynn D. D., Mash D. C. (1993). Distinct kinetic binding properties of N-[3H]-methylscopolamine afford differential labeling and localization of M1, M2, and M3 muscarinic receptor subtypes in primate brain. Synapse 14, 283–296. 10.1002/syn.890140406 PubMed DOI
Gomeza J., Shannon H., Kostenis E., Felder C., Zhang L., Brodkin J., et al. . (1999a). Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 96, 1692–1697. 10.1073/pnas.96.4.1692 PubMed DOI PMC
Gomeza J., Zhang L., Kostenis E., Felder C., Bymaster F., Brodkin J., et al. (1999b). Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 96, 10483–10488. 10.1073/pnas.96.18.10483 PubMed DOI PMC
Grailhe R., Cardona A., Even N., Seif I., Changeux J.-P., Cloëz-Tayarani I. (2009). Regional changes in the cholinergic system in mice lacking monoamine oxidase A. Brain Res. Bull. 78, 283–289. 10.1016/j.brainresbull.2008.12.004 PubMed DOI
Hersch S. M., Gutekunst C. A., Rees H. D., Heilman C. J., Levey A. I. (1994). Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J. neurosci. 14, 3351–3363. PubMed PMC
Jositsch G., Papadakis T., Haberberger R. V., Wolff M., Wess J., Kummer W. (2009). Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn-Schmiedeberg's Arch. Pharmacol. 379, 389–395. 10.1007/s00210-008-0365-9 PubMed DOI PMC
Kow R. L., Nathanson N. M. (2012). Structural biology: muscarinic receptors become crystal clear. Nature 482, 480–481. 10.1038/482480a PubMed DOI
Kruse A. C., Ring A. M., Manglik A., Hu J., Hu K., Eitel K., et al. . (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106. 10.1038/nature12735 PubMed DOI PMC
Langmead C. J., Watson J., Reavill C. (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117, 232–243. 10.1016/j.pharmthera.2007.09.009 PubMed DOI
Levey A. I. (1996). Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 93, 13541–13546. 10.1073/pnas.93.24.13541 PubMed DOI PMC
Levey A. I., Kitt C. A., Simonds W. F., Price D. L., Brann M. R. (1991). Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11, 3218–3226. PubMed PMC
Manuel I., Barreda-Gómez G., González De San Román E., Veloso A., Fernández J. A., Giralt M. T., et al. . (2015). Neurotransmitter receptor localization: from autoradiography to imaging mass spectrometry. ACS Chem. Neurosci. 6, 362–373. 10.1021/cn500281t PubMed DOI
McCabe R. T., Gibb J. W., Wamsley J. K., Hanson G. R. (1987). Autoradiographic analysis of muscarinic cholinergic and serotonergic receptor alterations following methamphetamine treatment. Brain Res. Bull. 19, 551–557. 10.1016/0361-9230(87)90072-4 PubMed DOI
Mulugeta E., Karlsson E., Islam A., Kalaria R., Mangat H., Winblad B., et al. . (2003). Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. Brain Res. 960, 259–262. 10.1016/S0006-8993(02)03542-4 PubMed DOI
Myslivecek J., Klein M., Novakova M., Ricny J. (2008). The detection of the non-M-2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn-Schmiedebergs Arch. Pharmacol. 378, 103–116. 10.1007/s00210-008-0285-8 PubMed DOI
Nieves-Martinez E., Haynes K., Childers S. R., Sonntag W. E., Nicolle M. M. (2012). Muscarinic receptor/G-protein coupling is reduced in the dorsomedial striatum of cognitively impaired aged rats. Behav. Brain Res. 227, 258–264. 10.1016/j.bbr.2011.10.048 PubMed DOI PMC
Oki T., Takagi Y., Inagaki S., Taketo M. M., Manabe T., Matsui M., et al. (2005). Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Mol. Brain Res. 133, 6–11. 10.1016/j.molbrainres.2004.09.012 PubMed DOI
Peralta E. G., Ashkenazi A., Winslow J. W., Smith D. H., Ramachandran J., Capon D. J. (1987). Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6, 3923–3929. PubMed PMC
Pradidarcheep W., Michel M. C. (2016). Use of antibodies in the research on muscarinic receptor subtypes, in Muscarinic Receptor: From Structure to Animal Models, eds Myslivecek J., Jakubik J. (New York, NY: Springer; ), 83–94.
Reiner C., Nathanson N. (2012). Muscarinic receptor trafficking, in Muscarinic Receptors, eds Fryer A. D., Christopoulos A., Nathanson N. M. (Berlin; Heidelberg: Springer; ), 61–78. PubMed
Scarr E., Dean B., Der Zee E. A., Luiten P. G. (1999). Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia? J. Neurochem. 107, 1188–1195. 10.1111/j.1471-4159.2008.05711.x PubMed DOI
Shin J. H., Adrover M. F., Wess J., Alvarez V. A. (2015). Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 112, 8124–8129. 10.1073/pnas.1508846112 PubMed DOI PMC
Thomsen M., Sørensen G., Dencker D. (2017). Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology. [Epub ahead of print]. 10.1016/j.neuropharm.2017.09.011 PubMed DOI PMC
Tice M. A., Hashemi T., Taylor L. A., McQuade R. D. (1996). Distribution of muscarinic receptor subtypes in rat brain from postnatal to old age. Dev. Brain Res. 92, 70–76. 10.1016/0165-3806(95)01515-9 PubMed DOI
Tien L.-T., Fan L.-W., Sogawa C., Ma T., Loh H. H., Ho I.-K. (2004). Changes in acetylcholinesterase activity and muscarinic receptor bindings in μ-opioid receptor knockout mice. Mol. Brain Res. 126, 38–44. 10.1016/j.molbrainres.2004.03.011 PubMed DOI PMC
Vilaró M. T., Palacios J. M., Mengod G. (1990). Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett. 114, 154–159. 10.1016/0304-3940(90)90064-G PubMed DOI
Villiger J. W., Faull R. L. M. (1985). Muscarinic cholinergic receptors in the human spinal cord: differential localization of [3H]pirenzepine and [3H]quinuclidinylbenzilate binding sites. Brain Res. 345, 196–199. 10.1016/0006-8993(85)90854-6 PubMed DOI
Wamsley J. K., Gehlert D. R., Roeske W. R., Yamamura H. I. (1984). Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [3H]-QNB and [3H]-pirenzepine. Life Sci. 34, 1395–1402. 10.1016/0024-3205(84)90012-2 PubMed DOI
Wang Q., Wei X., Gao H., Li J., Liao J., Liu X., et al. . (2014). Simvastatin reverses the downregulation of M1/4 receptor binding in 6-hydroxydopamine-induced parkinsonian rats: the association with improvements in long-term memory. Neuroscience 267, 57–66. 10.1016/j.neuroscience.2014.02.031 PubMed DOI
Watson M., Roeske W. R., Johnson P. C., Yamamura H. I. (1984). [3H]Pirenzepine identifies putative M1 muscarinic receptors in human stellate ganglia. Brain Res. 290, 179–182. 10.1016/0006-8993(84)90751-0 PubMed DOI
Weiner D. M., Levey A. I., Brann M. R. (1990). Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 87, 7050–7054. 10.1073/pnas.87.18.7050 PubMed DOI PMC
Wess J., Duttaroy A., Zhang W., Gomeza J., Cui Y., Miyakawa T., et al. . (2003). M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept. Channels 9, 279–290. 10.3109/10606820308262 PubMed DOI
Wess J., Eglen R. M., Gautam D. (2007). Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 6, 721–733. 10.1038/nrd2379 PubMed DOI
Wolff S. C., Hruska Z., Nguyen L., Dohanich G. P. (2008). Asymmetrical distributions of muscarinic receptor binding in the hippocampus of female rats. Eur. J. Pharmacol. 588, 248–250. 10.1016/j.ejphar.2008.04.002 PubMed DOI
Yamamura H. I., Wamsley J. K., Deshmukh P., Roeske W. R. (1983). Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]pirenzepine. Eur. J. Pharmacol. 91, 147–149. 10.1016/0014-2999(83)90379-5 PubMed DOI
Yasuda R. P., Ciesla W., Flores L. R., Wall S. J., Li M., Satkus S. A., et al. . (1993). Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol. Pharmacol. 43, 149–157. PubMed
Zavitsanou K., Katsifis A., Mattner F., Huang X.-F. (2003). Investigation of M1//M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29, 619–625. 10.1038/sj.npp.1300367 PubMed DOI
Zhang W., Basile A. S., Gomeza J., Volpicelli L. A., Levey A. I., Wess J. (2002). Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J. Neurosci. 22, 1709–1717. PubMed PMC
Multitargeting nature of muscarinic orthosteric agonists and antagonists
Social Isolation: How Can the Effects on the Cholinergic System Be Isolated?
Variability in the Drug Response of M4 Muscarinic Receptor Knockout Mice During Day and Night Time
The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase