Social Isolation: How Can the Effects on the Cholinergic System Be Isolated?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34916930
PubMed Central
PMC8670609
DOI
10.3389/fphar.2021.716460
PII: 716460
Knihovny.cz E-zdroje
- Klíčová slova
- cholinergic signaling, interactome, muscarinic receptors, nicotinic receptors, social isolation, social stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1-165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.
Zobrazit více v PubMed
Ago Y., Koda K., Ota Y., Kita Y., Fukada A., Takuma K., et al. (2011). Donepezil, but Not Galantamine, Blocks Muscarinic Receptor-Mediated In Vitro and In Vivo Responses. Synapse 65, 1373–1377. 10.1002/syn.20969 PubMed DOI
Ahlin G., Karlsson J., Pedersen J. M., Gustavsson L., Larsson R., Matsson P., et al. (2008). Structural Requirements for Drug Inhibition of the Liver Specific Human Organic Cation Transport Protein 1. J. Med. Chem. 51, 5932–5942. 10.1021/jm8003152 PubMed DOI
Albuquerque E. X., Pereira E. F., Alkondon M., Rogers S. W. (2009). Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. 89, 73–120. 10.1152/physrev.00015.2008 PubMed DOI PMC
Aleklett K., Boddy L. (2021). Fungal Behaviour: a New Frontier in Behavioural Ecology. Trends Ecol. Evol. 36, 787–796. 10.1016/j.tree.2021.05.006 PubMed DOI
Alexander S. P., Christopoulos A., Davenport A. P., Kelly E., Marrion N. V., Peters J. A., et al. (2017a). THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G Protein-Coupled Receptors. Br. J. Pharmacol. 174 (1), S17–s129. 10.1111/bph.13878 PubMed DOI PMC
Alexander S. P., Peters J. A., Kelly E., Marrion N. V., Faccenda E., Harding S. D., et al. (2017b). THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligand-Gated Ion Channels. Br. J. Pharmacol. 174, S130–S159. 10.1111/bph.13879 PubMed DOI PMC
Becerra M. A., Herrera M. D., Marhuenda E. (2001). Action of Tacrine on Muscarinic Receptors in Rat Intestinal Smooth Muscle. J. Auton. Pharmacol. 21, 113–119. 10.1046/j.1365-2680.2001.00213.x PubMed DOI
Bell R., Warburton D. M., Brown K. (1985). Drugs as Research Tools in Psychology: Cholinergic Drugs and Aggression. Neuropsychobiology 14, 181–192. 10.1159/000118225 PubMed DOI
Bockman C. S., Zeng W., Hall J., Mittelstet B., Schwarzkopf L., Stairs D. J. (2018). Nicotine Drug Discrimination and Nicotinic Acetylcholine Receptors in Differentially Reared Rats. Psychopharmacology (Berl) 235, 1415–1426. 10.1007/s00213-018-4850-7 PubMed DOI
Branchi I., Campolongo P., Alleva E. (2004). Scopolamine Effects on Ultrasonic Vocalization Emission and Behavior in the Neonatal Mouse. Behav. Brain Res. 151, 9–16. 10.1016/S0166-4328(03)00277-8 PubMed DOI
Brown D. A. (2010). Muscarinic Acetylcholine Receptors (mAChRs) in the Nervous System: Some Functions and Mechanisms. J. Mol. Neurosci. 41, 340–346. 10.1007/s12031-010-9377-2 PubMed DOI
Burnstock G. (2009). Autonomic Neurotransmission: 60 Years since Sir Henry Dale. Annu. Rev. Pharmacol. Toxicol. 49, 1–30. 10.1146/annurev.pharmtox.052808.102215 PubMed DOI
Cacioppo J. T., Hawkley L. C., Norman G. J., Berntson G. G. (2011). Social Isolation. Ann. N. Y Acad. Sci. 1231, 17–22. 10.1111/j.1749-6632.2011.06028.x PubMed DOI PMC
Cantí C., Bodas E., Marsal J., Solsona C. (1998). Tacrine and Physostigmine Block Nicotinic Receptors in Xenopus Oocytes Injected with Torpedo Electroplaque Membranes. Eur. J. Pharmacol. 363, 197–202. 10.1016/s0014-2999(98)00793-6 PubMed DOI
Carr B. J., Mihara K., Ramachandran R., Saifeddine M., Nathanson N. M., Stell W. K., et al. (2018). Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro . Invest. Ophthalmol. Vis. Sci. 59, 2778–2791. 10.1167/iovs.17-22562 PubMed DOI
Caruso M. J., Reiss D. E., Caulfield J. I., Thomas J. L., Baker A. N., Cavigelli S. A., et al. (2018). Adolescent Chronic Variable Social Stress Influences Exploratory Behavior and Nicotine Responses in Male, but Not Female, BALB/cJ Mice. Brain Res. Bull. 138, 37–49. 10.1016/j.brainresbull.2017.08.001 PubMed DOI PMC
Champtiaux N., Changeux J. P. (2004). Knockout and Knockin Mice to Investigate the Role of Nicotinic Receptors in the central Nervous System. Prog. Brain Res. 145, 235–251. 10.1016/s0079-6123(03)45016-4 PubMed DOI
Cheeta S., Irvine E., File S. E. (2001). Social Isolation Modifies Nicotine's Effects in Animal Tests of Anxiety. Br. J. Pharmacol. 132, 1389–1395. 10.1038/sj.bjp.0703991 PubMed DOI PMC
Cilia J., Cluderay J. E., Robbins M. J., Reavill C., Southam E., Kew J. N., et al. (2005). Reversal of Isolation-Rearing-Induced PPI Deficits by an Alpha7 Nicotinic Receptor Agonist. Psychopharmacology (Berl) 182, 214–219. 10.1007/s00213-005-0069-5 PubMed DOI
Cilia J., Reavill C., Hagan J. J., Jones D. N. (2001). Long-term Evaluation of Isolation-Rearing Induced Prepulse Inhibition Deficits in Rats. Psychopharmacology (Berl) 156, 327–337. 10.1007/s002130100786 PubMed DOI
Cohen S., Syme S. L. (1985). in Social Support and Health/. Leonard Syme. Editor Sheldon Cohen S. (Orlando, Fla: Academic Press; ).
Da Vanzo J. P., Daugherty M., Ruckart R., Kang L. (1966). Pharmacological and Biochemical Studies in Isolation-Induced Fighting Mice. Psychopharmacologia 9, 210–219. 10.1007/BF02198481 PubMed DOI
Dani J. A. (2001). Overview of Nicotinic Receptors and Their Roles in the central Nervous System. Biol. Psychiatry 49, 166–174. 10.1016/s0006-3223(00)01011-8 PubMed DOI
Dean B., Scarr E. (2020). Muscarinic M1 and M4 Receptors: Hypothesis Driven Drug Development for Schizophrenia. Psychiatry Res. 288, 112989. 10.1016/j.psychres.2020.112989 PubMed DOI
Defeudis F. V. (1972). Binding of 3 H-Acetylcholine and 14 C- -aminobutyric Acid to Subcellular Fractions of the Brains of Differentially-Housed Mice. Neuropharmacology 11, 879–888. 10.1016/0028-3908(72)90047-0 PubMed DOI
Del-Bel E. A., Joca S. R., Padovan C. M., Guimarães F. S. (2002). Effects of Isolation-Rearing on serotonin-1A and M1-Muscarinic Receptor Messenger RNA Expression in the Hipocampal Formation of Rats. Neurosci. Lett. 332, 123–126. 10.1016/s0304-3940(02)00933-3 PubMed DOI
Dencker D., Thomsen M., Wörtwein G., Weikop P., Cui Y., Jeon J., et al. (2012). Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease. ACS Chem. Neurosci. 3, 80–89. 10.1021/cn200110q PubMed DOI PMC
Deurveilher S., Ryan N., Burns J., Semba K. (2013). Social and Environmental Contexts Modulate Sleep Deprivation-Induced C-Fos Activation in Rats. Behav. Brain Res. 256, 238–249. 10.1016/j.bbr.2013.08.029 PubMed DOI
Dörner G., Bluth R., Tönjes R. (1982). Acetylcholine Concentrations in the Developing Brain Appear to Affect Emotionality and Mental Capacity in Later Life. Acta Biol. Med. Ger. 41, 721–723. PubMed
Egashira T. (2000). Effects of Breeding Conditions on Neurochemical Cholinergic and Monoaminergic Markers in Aged Rat Brain. Nihon Ronen Igakkai Zasshi 37, 233–238. 10.3143/geriatrics.37.233 PubMed DOI
Eiden L. E. (1998). The Cholinergic Gene Locus. J. Neurochem. 70, 2227–2240. 10.1046/j.1471-4159.1998.70062227.x PubMed DOI
Essman W. B. (1971). Changes in Cholinergic Activity and Avoidance Behavior by Nicotine in Differentially Housed Mice. Int. J. Neurosci. 2, 199–205. 10.3109/00207457109147002 PubMed DOI
Farar V., Mohr F., Legrand M., Lamotte d'Incamps B., Cendelin J., Leroy J., et al. (2012). Near-complete Adaptation of the PRiMA Knockout to the Lack of central Acetylcholinesterase. J. Neurochem. 122, 1065–1080. 10.1111/j.1471-4159.2012.07856.x PubMed DOI
Farar V., Myslivecek J. (2016). “Autoradiography Assessment of Muscarinic Receptors in the Central Nervous System,” in Muscarinic Receptor: From Structure to Animal Models. Editors Myslivecek J., Jakubik J. (New York: Springer; ), 159–180. 10.1007/978-1-4939-2858-3_9 DOI
Francès H., Lecrubier Y., Simon P. (1980). Isolation Increases the Responses to Beta-Adrenergic Stimulation in Mice. Biol. Psychiatry 15, 965–969. PubMed
Frances H., Maurin Y., Lecrubier Y., Puech A. J., Simon P. (1981). Effect of Chronic Lithium Treatment on Isolation-Induced Behavioral and Biochemical Effects in Mice. Eur. J. Pharmacol. 72, 337–341. 10.1016/0014-2999(81)90572-0 PubMed DOI
Garrido P., De Blas M., Ronzoni G., Cordero I., Antón M., Giné E., et al. (2013). Differential Effects of Environmental Enrichment and Isolation Housing on the Hormonal and Neurochemical Responses to Stress in the Prefrontal Cortex of the Adult Rat: Relationship to Working and Emotional Memories. J. Neural Transm. (Vienna) 120, 829–843. 10.1007/s00702-012-0935-3 PubMed DOI
Gaulton A., Hersey A., Nowotka M., Bento A. P., Chambers J., Mendez D., et al. (2016). The ChEMBL Database in 2017. Nucleic Acids Res. 45, D945–D954. 10.1093/nar/gkw1074 PubMed DOI PMC
Gotti C., Clementi F. (2004). Neuronal Nicotinic Receptors: from Structure to Pathology. Prog. Neurobiol. 74, 363–396. 10.1016/j.pneurobio.2004.09.006 PubMed DOI
Grippo A. J., Scotti M. L., Wardwell J., Mcneal N., Bates S. L., Chandler D. L., et al. (2018). Cardiac and Behavioral Effects of Social Isolation and Experimental Manipulation of Autonomic Balance. Auton. Neurosci. 214, 1–8. 10.1016/j.autneu.2018.08.002 PubMed DOI PMC
Haddad E. B., Mak J. C., Hislop A., Haworth S. G., Barnes P. J. (1994). Characterization of Muscarinic Receptor Subtypes in Pig Airways: Radioligand Binding and Northern Blotting Studies. Am. J. Physiol. 266, L642–L648. 10.1152/ajplung.1994.266.6.L642 PubMed DOI
Hao S., Avraham Y., Bonne O., Berry E. M. (2001). Separation-induced Body Weight Loss, Impairment in Alternation Behavior, and Autonomic Tone: Effects of Tyrosine. Pharmacol. Biochem. Behav. 68, 273–281. 10.1016/s0091-3057(00)00448-2 PubMed DOI
Harada T., Fushimi K., Kato A., Ito Y., Nishijima S., Sugaya K., et al. (2010). Demonstration of Muscarinic and Nicotinic Receptor Binding Activities of Distigmine to Treat Detrusor Underactivity. Biol. Pharm. Bull. 33, 653–658. 10.1248/bpb.33.653 PubMed DOI
Herbut M., Roliński Z. (1985). The Cholinergic Influences on Aggression in Isolated Mice. Pol. J. Pharmacol. Pharm. 37, 1–10. PubMed
Heritch A. J., Henderson K., Westfall T. C. (1990). Effects of Social Isolation on Brain Catecholamines and Forced Swimming in Rats: Prevention by Antidepressant Treatment. J. Psychiatr. Res. 24, 251–258. 10.1016/0022-3956(90)90014-h PubMed DOI
Higashino K., Ago Y., Umeki T., Hasebe S., Onaka Y., Hashimoto H., et al. (2016). Rivastigmine Improves Isolation Rearing-Induced Prepulse Inhibition Deficits via Muscarinic Acetylcholine Receptors in Mice. Psychopharmacology (Berl) 233, 521–528. 10.1007/s00213-015-4123-7 PubMed DOI
Huang H. J., Liang K. C., Ke H. C., Chang Y. Y., Hsieh-Li H. M. (2011). Long-term Social Isolation Exacerbates the Impairment of Spatial Working Memory in APP/PS1 Transgenic Mice. Brain Res. 1371, 150–160. 10.1016/j.brainres.2010.11.043 PubMed DOI
Ito Y., Oyunzul L., Seki M., Fujino Oki T., Matsui M., Yamada S. (2009). Quantitative Analysis of the Loss of Muscarinic Receptors in Various Peripheral Tissues in M1-M5 Receptor Single Knockout Mice. Br. J. Pharmacol. 156, 1147–1153. 10.1111/j.1476-5381.2009.00113.x PubMed DOI PMC
Jones G. H., Marsden C. A., Robbins T. W. (1991). Behavioural Rigidity and Rule-Learning Deficits Following Isolation-Rearing in the Rat: Neurochemical Correlates. Behav. Brain Res. 43, 35–50. 10.1016/s0166-4328(05)80050-6 PubMed DOI
Kling A., Finer S., Gilmour J. (1969). Regional Development of Acetylcholinesterase Activity in the Maternally Reared and Maternally Deprived Cat. Int. J. Neuropharmacol 8, 25–31. 10.1016/0028-3908(69)90031-8 PubMed DOI
Koda K., Ago Y., Kawasaki T., Hashimoto H., Baba A., Matsuda T. (2008). Galantamine and Donepezil Differently Affect Isolation Rearing-Induced Deficits of Prepulse Inhibition in Mice. Psychopharmacology (Berl) 196, 293–301. 10.1007/s00213-007-0962-1 PubMed DOI
Koda K., Ago Y., Yano K., Nishimura M., Kobayashi H., Fukada A., et al. (2011). Involvement of Decreased Muscarinic Receptor Function in Prepulse Inhibition Deficits in Mice Reared in Social Isolation. Br. J. Pharmacol. 162, 763–772. 10.1111/j.1476-5381.2010.01080.x PubMed DOI PMC
Koukouli F., Changeux J. P. (2020). Do Nicotinic Receptors Modulate High-Order Cognitive Processing? Trends Neurosci. 43, 550–564. 10.1016/j.tins.2020.06.001 PubMed DOI
Kruse A. C., Kobilka B. K., Gautam D., Sexton P. M., Christopoulos A., Wess J. (2014). Muscarinic Acetylcholine Receptors: Novel Opportunities for Drug Development. Nat. Rev. Drug Discov. 13, 549–560. 10.1038/nrd4295 PubMed DOI PMC
Lapiz M. D., Fulford A., Muchimapura S., Mason R., Parker T., Marsden C. A. (2003). Influence of Postweaning Social Isolation in the Rat on Brain Development, Conditioned Behavior, and Neurotransmission. Neurosci. Behav. Physiol. 33, 13–29. 10.1023/a:1021171129766 PubMed DOI
Lehmann K., Hundsdörfer B., Hartmann T., Teuchert-Noodt G. (2004). The Acetylcholine Fiber Density of the Neocortex Is Altered by Isolated Rearing and Early Methamphetamine Intoxication in Rodents. Exp. Neurol. 189, 131–140. 10.1016/j.expneurol.2004.05.017 PubMed DOI
Leng A., Feldon J., Ferger B. (2004). Long-term Social Isolation and Medial Prefrontal Cortex: Dopaminergic and Cholinergic Neurotransmission. Pharmacol. Biochem. Behav. 77, 371–379. 10.1016/j.pbb.2003.11.011 PubMed DOI
Li H. Q., Pratelli M., Godavarthi S., Zambetti S., Spitzer N. C. (2020). Decoding Neurotransmitter Switching: The Road Forward. J. Neurosci. 40, 4078–4089. 10.1523/JNEUROSCI.0005-20.2020 PubMed DOI PMC
Lockhart B., Closier M., Howard K., Steward C., Lestage P. (2001). Differential Inhibition of [3H]-Oxotremorine-M and [3H]-Quinuclinidyl Benzilate Binding to Muscarinic Receptors in Rat Brain Membranes with Acetylcholinesterase Inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 363, 429–438. 10.1007/s002100000382 PubMed DOI
Maelicke A., Albuquerque E. X. (2000). Allosteric Modulation of Nicotinic Acetylcholine Receptors as a Treatment Strategy for Alzheimer's Disease. Eur. J. Pharmacol. 393, 165–170. 10.1016/s0014-2999(00)00093-5 PubMed DOI
Maksay G., Laube B., Betz H. (1999). Selective Blocking Effects of Tropisetron and Atropine on Recombinant glycine Receptors. J. Neurochem. 73, 802–806. 10.1046/j.1471-4159.1999.0730802.x PubMed DOI
Mallet J., Houhou L., Pajak F., Oda Y., Cervini R., Bejanin S., et al. (1998). The Cholinergic Locus: ChAT and VAChT Genes. J. Physiol. Paris 92, 145–147. 10.1016/S0928-4257(98)80153-8 PubMed DOI
Manouze H., Ghestem A., Poillerat V., Bennis M., Ba-M’hamed S., Benoliel J. J., et al. (2019). Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy. eneuro 6, ENEURO 0179-0118 2019. 10.1523/eneuro.0179-18.2019 PubMed DOI PMC
Matsumoto K., Fujiwara H., Araki R., Yabe T. (2019). Post-weaning Social Isolation of Mice: A Putative Animal Model of Developmental Disorders. J. Pharmacol. Sci. 141, 111–118. 10.1016/j.jphs.2019.10.002 PubMed DOI
Mccormick C. M., Robarts D., Kopeikina K., Kelsey J. E. (2005). Long-lasting, Sex- and Age-specific Effects of Social Stressors on Corticosterone Responses to Restraint and on Locomotor Responses to Psychostimulants in Rats. Horm. Behav. 48, 64–74. 10.1016/j.yhbeh.2005.01.008 PubMed DOI
Mighiu A. S., Heximer S. P. (2012). Controlling Parasympathetic Regulation of Heart Rate: a Gatekeeper Role for RGS Proteins in the Sinoatrial Node. Front. Physiol. 3, 204. 10.3389/fphys.2012.00204 PubMed DOI PMC
Millan M. J., Gobert A., Panayi F., Rivet J. M., Dekeyne A., Brocco M., et al. (2008). The Melanin-Concentrating Hormone1 Receptor Antagonists, SNAP-7941 and GW3430, Enhance Social Recognition and Dialysate Levels of Acetylcholine in the Frontal Cortex of Rats. Int. J. Neuropsychopharmacol. 11, 1105–1122. 10.1017/S1461145708008894 PubMed DOI
Muchimapura S., Mason R., Marsden C. A. (2003). Effect of Isolation Rearing on Pre- and post-synaptic Serotonergic Function in the Rat Dorsal hippocampus. Synapse 47, 209–217. 10.1002/syn.10167 PubMed DOI
Murphy G. P., Dudley S. A. (2009). Kin Recognition: Competition and Cooperation in Impatiens (Balsaminaceae). Am. J. Bot. 96, 1990–1996. 10.3732/ajb.0900006 PubMed DOI
Myslivecek J., Farar V., Valuskova P. (2017). M(4) Muscarinic Receptors and Locomotor Activity Regulation. Physiol. Res. 66, S443–s455. 10.33549/physiolres.933796 PubMed DOI
Myslivecek J., Kvetnanský R. (2006). The Effects of Stress on Muscarinic Receptors. Heterologous Receptor Regulation: Yes or No? Auton. Autacoid Pharmacol. 26, 235–251. 10.1111/j.1474-8673.2006.00359.x PubMed DOI
Myslivecek J. (2019). “M4 Muscarinic Receptors – Structure, Ligands, Detection and Function,” in Acetylcholine Receptors in Health and Disease. Editor Gupta A. E. (New York: Nova Science Publishers; ), 41–68.
Myslivecek J. (2015). The Basis of the Stress Reaction. Curr. Sci. 109, 716–726.
Noschang C., Lampert C., Krolow R., De Almeida R. M. M. (2021). Social Isolation at Adolescence: a Systematic Review on Behaviour Related to Cocaine, Amphetamine and Nicotine Use in Rats and Mice. Psychopharmacology (Berl) 238, 927–947. 10.1007/s00213-021-05777-z PubMed DOI
O'neill H. C., Rieger K., Kem W. R., Stevens K. E. (2003). DMXB, an Alpha7 Nicotinic Agonist, Normalizes Auditory Gating in Isolation-Reared Rats. Psychopharmacology (Berl) 169, 332–339. 10.1007/s00213-003-1482-2 PubMed DOI
Oehler J., Jähkel M., Schmidt J. (1980). Effect of Social Isolation on the Transmitter Sensitivity of Striatal and Hippocampal Neurons of the Rat. Acta Biol. Med. Ger. 39, 1089–1093. PubMed
Okada R., Fujiwara H., Mizuki D., Araki R., Yabe T., Matsumoto K. (2015). Involvement of Dopaminergic and Cholinergic Systems in Social Isolation-Induced Deficits in Social Affiliation and Conditional Fear Memory in Mice. Neuroscience 299, 134–145. 10.1016/j.neuroscience.2015.04.064 PubMed DOI
Oki T., Takagi Y., Inagaki S., Taketo M. M., Manabe T., Matsui M., et al. (2005). Quantitative Analysis of Binding Parameters of [3H]N-Methylscopolamine in central Nervous System of Muscarinic Acetylcholine Receptor Knockout Mice. Brain Res. Mol. Brain Res. 133, 6–11. 10.1016/j.molbrainres.2004.09.012 PubMed DOI
Okuda T., Haga T. (2003). High-affinity Choline Transporter. Neurochem. Res. 28, 483–488. 10.1023/a:1022809003997 PubMed DOI
Ouchi H., Ono K., Murakami Y., Matsumoto K. (2013). Social Isolation Induces Deficit of Latent Learning Performance in Mice: a Putative Animal Model of Attention Deficit/hyperactivity Disorder. Behav. Brain Res. 238, 146–153. 10.1016/j.bbr.2012.10.029 PubMed DOI
Pascuzzo G. J., Akaike A., Maleque M. A., Shaw K. P., Aronstam R. S., Rickett D. L., et al. (1984). The Nature of the Interactions of Pyridostigmine with the Nicotinic Acetylcholine Receptor-Ionic Channel Complex. I. Agonist, Desensitizing, and Binding Properties. Mol. Pharmacol. 25, 92–101. PubMed
Perrier A. L., Massoulié J., Krejci E. (2002). PRiMA: the Membrane Anchor of Acetylcholinesterase in the Brain. Neuron 33, 275–285. 10.1016/s0896-6273(01)00584-0 PubMed DOI
Petkov V. V., Rousseva S. (1984). Effects of Caffeine on Aggressive Behavior and Avoidance Learning of Rats with Isolation Syndrome. Methods Find Exp. Clin. Pharmacol. 6, 433–436. PubMed
Plaschke M., Dörner G., Krause E., Krause M., Kuhlmey H. M., Schuster T., et al. (1987). Vesicle Population of Synapses in the hippocampus of the Rat Following Early Postnatal Deprivation and Administration of Pyridostigmine. J. Hirnforsch 28, 1–11. PubMed
Plaschke M., Wenzel J., Dörner G., Tönjes R. (1986). Effect of Early Postnatal Social and Nutritional Deprivation and Simultaneous Treatment with Pyridostigmine on Synaptogenesis in the hippocampus of the Rat. Electron Microscopy, Morphometric and Stereologic Studies. J. Hirnforsch 27, 145–158. PubMed
Sahley T. L., Panksepp J., Zolovick A. J. (1981). Cholinergic Modulation of Separation Distress in the Domestic Chick. Eur. J. Pharmacol. 72, 261–264. 10.1016/0014-2999(81)90283-1 PubMed DOI
Samochocki M., Höffle A., Fehrenbacher A., Jostock R., Ludwig J., Christner C., et al. (2003). Galantamine Is an Allosterically Potentiating Ligand of Neuronal Nicotinic but Not of Muscarinic Acetylcholine Receptors. J. Pharmacol. Exp. Ther. 305, 1024–1036. 10.1124/jpet.102.045773 PubMed DOI
Shao S., Li M., Du W., Shao F., Wang W. (2014). Galanthamine, an Acetylcholine Inhibitor, Prevents Prepulse Inhibition Deficits Induced by Adolescent Social Isolation or MK-801 Treatment. Brain Res. 1589, 105–111. 10.1016/j.brainres.2014.09.032 PubMed DOI
Silverman R. B. (2004). “Receptors,” in The Organic Chemistry of Drug Design and Drug Action. Editor Silverman R. B.. Second Edition (San Diego: Academic Press; ), 121–172l. 10.1016/b978-0-08-051337-9.50008-0 DOI
Skok V. I. (2002). Nicotinic Acetylcholine Receptors in Autonomic Ganglia. Auton. Neurosci. 97, 1–11. 10.1016/s1566-0702(01)00386-1 PubMed DOI
Sowell J. W., Tang Y., Valli M. J., Chapman J. M., Usher L. A., Vaughan C. M., et al. (1992). Synthesis and Cholinergic Properties of Bis[[(dimethylamino)methyl]furanyl] Analogues of Ranitidine. J. Med. Chem. 35, 1102–1108. 10.1021/jm00084a015 PubMed DOI
Thal D. M., Sun B., Feng D., Nawaratne V., Leach K., Felder C. C., et al. (2016). Crystal Structures of the M1 and M4 Muscarinic Acetylcholine Receptors. Nature 531, 335–340. 10.1038/nature17188 PubMed DOI PMC
Tobin G., Giglio D., Lundgren O. (2009). Muscarinic Receptor Subtypes in the Alimentary Tract. J. Physiol. Pharmacol. 60, 3–21. PubMed
Tomizawa M., Yamamoto I. (1992). Binding of Nicotinoids and the Related Compounds to the Insect Nicotinic Acetyicholine Receptor. J. Pestic. Sci. 17, 231–236. 10.1584/jpestics.17.4_231 DOI
Valuskova P., Farar V., Forczek S., Krizova I., Myslivecek J. (2018). Autoradiography of 3H-Pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Front. Pharmacol. 9, 124. 10.3389/fphar.2018.00124 PubMed DOI PMC
Vass M., Kooistra A. J., Yang D., Stevens R. C., Wang M. W., De Graaf C. (2018). Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends Pharmacol. Sci. 39, 494–512. 10.1016/j.tips.2018.02.004 PubMed DOI
Wang H., Liang S., Burgdorf J., Wess J., Yeomans J. (2008). Ultrasonic Vocalizations Induced by Sex and Amphetamine in M2, M4, M5 Muscarinic and D2 Dopamine Receptor Knockout Mice. PLoS ONE 3, e1893. 10.1371/journal.pone.0001893 PubMed DOI PMC
Wess J. (2005). Allosteric Binding Sites on Muscarinic Acetylcholine Receptors. Mol. Pharmacol. 68, 1506–1509. 10.1124/mol.105.019141 PubMed DOI
Wongwitdecha N., Marsden C. A. (1996). Effects of Social Isolation Rearing on Learning in the morris Water Maze. Brain Res. 715, 119–124. 10.1016/0006-8993(95)01578-7 PubMed DOI
Yang Z., Ney A., Cromer B. A., Ng H. L., Parker M. W., Lynch J. W. (2007). Tropisetron Modulation of the glycine Receptor: Femtomolar Potentiation and a Molecular Determinant of Inhibition. J. Neurochem. 100, 758–769. 10.1111/j.1471-4159.2006.04242.x PubMed DOI
Yoshimura H. (1980). Cholinergic Mechanisms in Scent Marking Behavior by Mongolian Gerbils (Meriones unguiculatus). Pharmacol. Biochem. Behav. 13, 519–523. 10.1016/0091-3057(80)90274-9 PubMed DOI
Yoshimura H., Ueki S. (1977). Biochemical Correlates in Mouse-Killing Behavior of the Rat: Prolonged Isolation and Brain Cholinergic Function. Pharmacol. Biochem. Behav. 6, 193–196. 10.1016/0091-3057(77)90073-9 PubMed DOI
Zhuang Z. P., Kung M. P., Kung H. F. (1993). Synthesis of (R,S)-trans-8-hydroxy-2-[N-n-propyl-N-(3'-iodo-2'-propenyl)amino]tetral in (trans-8-OH-PIPAT): a New 5-HT1A Receptor Ligand. J. Med. Chem. 36, 3161–3165. 10.1021/jm00073a016 PubMed DOI