Structural and regulatory determinants of flagellar motility in Rhodobacterales - The archetypal flagellum of Phaeobacter inhibens DSM 17395
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
PubMed
40196601
PubMed Central
PMC11974857
DOI
10.1101/2025.03.24.645028
PII: 2025.03.24.645028
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
Flagellar motility is crucial for the swim-and-stick lifestyle of Rhodobacterales and plays an important role for bacterial-algal interactions. This alphaproteobacterial order contains three distinct types of flagellar gene clusters (FGCs) for the formation of a functional flagellum. Our phylogenetically broad taxon sampling of more than 300 genomes revealed that the most common FGC, the fla1-type, was probably already present in the common ancestor of Rhodobacterales and was strictly vertically inherited, while the other two FGC types, fla2 and fla3, were spread via horizontal operon transfers. Swimming of the marine model organism Phaeobacter inhibens DSM 17395 (Roseobacteraceae) is mediated by the archetypal fla1-type flagellum. Screening of 13,000 transposon mutants of P. inhibens on soft agar plates revealed that 40 genes, including four genes encoding conserved but not yet characterized proteins (CP1-4) within the FGC, are essential for motility. Exoproteome analyses indicated that CP1-4 are required at different stages of flagellar assembly. Only eight genes outside the FGC were identified as essential for swimming motility, including all three genes of the CtrA phosphorelay. Using comparative transcriptomics of ΔcckA, ΔchpT and ΔctrA mutants of the distantly related model organisms P. inhibens and Dinoroseobacter shibae DFL 12, we identified genes for the flagellum and cyclic di-GMP turnover as core targets of the CtrA phosphorelay and a conserved connection with quorum sensing across members of the Rhodobacterales.
Genome Analytics Helmholtz Centre for Infection Research Braunschweig Germany
Institute of Microbiology Technical University of Braunschweig Braunschweig Germany
Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures Braunschweig Germany
See more in PubMed
Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the “Roseobacter Clade” Into a Novel Family, Roseobacteraceae fam. nov. Front Microbiol. 2021;12. doi: 10.3389/fmicb.2021.683109 PubMed DOI PMC
Huang Z, Li M, Oren A, Lai Q. Genome-based analysis of the family Paracoccaceae and description of Ostreiculturibacter nitratireducens gen. nov., sp. nov., isolated from an oyster farm on a tidal flat. Front Microbiol. 2024;15. doi: 10.3389/fmicb.2024.1376777 PubMed DOI PMC
Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11: 1483–1499. doi: 10.1038/ismej.2016.198 PubMed DOI PMC
Wichard T. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci. 2015;6. doi: 10.3389/fpls.2015.00086 PubMed DOI PMC
Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Falkowski PG, editor. eLife. 2016;5: e17473. doi: 10.7554/eLife.17473 PubMed DOI PMC
Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. Quorum sensing regulates ‘swim-or-stick’ lifestyle in the phycosphere. Environmental Microbiology. 2020;22: 4761–4778. doi: 10.1111/1462-2920.15228 PubMed DOI PMC
Isaac A, Mohamed AR, Amin SA. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Applied and Environmental Microbiology. 2024;90: e00570–24. doi: 10.1128/aem.00570-24 PubMed DOI PMC
Fei C, Booker A, Klass S, Vidyarathna NK, Ahn SH, Mohamed AR, et al. Friends and foes: symbiotic and algicidal bacterial influence on Karenia brevis blooms. ISME Communications. 2025;5: ycae164. doi: 10.1093/ismeco/ycae164 PubMed DOI PMC
Qui-Minet ZN, Wichard T, Del Olmo G, Pereira M, Holbl H, Ruiz P, et al. Light-regulated interactions between Phaeobacter sp. and Ulva ohnoi (Chlorophyta): Effects on microbiome dynamics, metabolome composition, and tropodithietic acid production. Environmental and Experimental Botany. 2025;230: 106093. doi: 10.1016/j.envexpbot.2025.106093 DOI
Wagner-Döbler I, Biebl H. Environmental Biology of the Marine Roseobacter Lineage. Annual Review of Microbiology. 2006;60: 255–280. doi: 10.1146/annurev.micro.60.080805.142115 PubMed DOI
Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12: 686–698. doi: 10.1038/nrmicro3326 PubMed DOI
Wienhausen G, Moraru C, Bruns S, Tran DQ, Sultana S, Wilkes H, et al. Ligand cross-feeding resolves bacterial vitamin B12 auxotrophies. Nature. 2024;629: 886–892. doi: 10.1038/s41586-024-07396-y PubMed DOI
Wang H, Tomasch J, Jarek M, Wagner-Döbler I. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Frontiers in microbiology. 2014;5: 311. doi: 10.3389/fmicb.2014.00311 PubMed DOI PMC
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, et al. Fatal affairs–conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microbial genomics. 2022;8. doi: 10.1099/mgen.0.000787 PubMed DOI PMC
Abada A, Beiralas R, Narvaez D, Sperfeld M, Duchin-Rapp Y, Lipsman V, et al. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. The ISME Journal. 2023;17: 1167–1183. doi: 10.1038/s41396-023-01427-8 PubMed DOI PMC
Miller TR, Belas R. Motility is involved in Silicibacter sp. TM1040 interaction with dinoflagellates. Environmental Microbiology. 2006;8: 1648–1659. doi: 10.1111/j.1462-2920.2006.01071.x PubMed DOI
Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, et al. Plasmid curing and the loss of grip – The 65-kb replicon of PubMed DOI
Wang H, Tomasch J, Michael V, Bhuju S, Jarek M, Petersen J, et al. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum. Frontiers in Microbiology. 2015;6: 1262. doi: 10.3389/fmicb.2015.01262 PubMed DOI PMC
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. The ISME Journal. 2016;10: 2498–2513. doi: 10.1038/ismej.2016.30 PubMed DOI PMC
Bartling P, Vollmers J, Petersen J. The first world swimming championships of roseobacters—Phylogenomic insights into an exceptional motility phenotype. Systematic and Applied Microbiology. 2018;41: 544–554. doi: 10.1016/j.syapm.2018.08.012 PubMed DOI
Stocker R, Seymour JR. Ecology and Physics of Bacterial Chemotaxis in the Ocean . Microbiology and Molecular Biology Reviews. 2012;76: 792–812. doi: 10.1128/mmbr.00029-12 PubMed DOI PMC
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton–bacterial interactions. Molecular Microbiology. 2024;122: 331–346. doi: 10.1111/mmi.15293 PubMed DOI
Lasker K, Mann TH, Shapiro L. An intracellular compass spatially coordinates cell cycle modules in PubMed DOI PMC
Teeseling MCF van, Thanbichler M. Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biological Chemistry. 2020;401: 1349–1363. doi: 10.1515/hsz-2020-0235 PubMed DOI
Macnab RM. How Bacteria Assemble Flagella. Annual Review of Microbiology. 2003;57: 77–100. doi: 10.1146/annurev.micro.57.030502.090832 PubMed DOI
Chevance FFV, Hughes KT. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol. 2008;6: 455–465. doi: 10.1038/nrmicro1887 PubMed DOI PMC
Wadhwa N, Berg HC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. 2022;20: 161–173. doi: 10.1038/s41579-021-00626-4 PubMed DOI
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiology Reviews. 2021;45: fuab038. doi: 10.1093/femsre/fuab038 PubMed DOI PMC
García N, Campos A, Osorio A, Poggio S, González-Pedrajo B, Camarena L, et al. The Flagellar Switch Genes fliM and fliN ofRhodobacter sphaeroides Are Contained in a Large Flagellar Gene Cluster. Journal of Bacteriology. 1998;180: 3978–3982. doi: 10.1128/jb.180.15.3978-3982.1998 PubMed DOI PMC
Frank O, Göker M, Pradella S, Petersen J. Ocean’s Twelve: flagellar and biofilm chromids in the multipartite genome of arinovum algicola DG898 exemplify functional compartmentalization. Environmental Microbiology. 2015;17: 4019–4034. doi: 10.1111/1462-2920.12947 PubMed DOI
Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J. Integrated Transcriptional Regulatory Network of Quorum Sensing, Replication Control, and SOS Response in Dinoroseobacter shibae. Frontiers in Microbiology. 2019;10. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00803 PubMed DOI PMC
Sonnenschein EC, Jimenez G, Castex M, Gram L. The Roseobacter-Group Bacterium Phaeobacter as a Safe Probiotic Solution for Aquaculture. Applied and Environmental Microbiology. 2021;87: e02581–20. doi: 10.1128/AEM.02581-20 PubMed DOI PMC
Drüppel K, Hensler M, Trautwein K, Koßmehl S, Wöhlbrand L, Schmidt-Hohagen K, et al. Pathways and substrate-specific regulation of amino acid degradation in haeobacter inhibens DSM 17395 (archetype of the marine oseobacter clade). Environmental Microbiology. 2014;16: 218–238. doi: 10.1111/1462-2920.12276 PubMed DOI
Trautwein K, Hensler M, Wiegmann K, Skorubskaya E, Wöhlbrand L, Wünsch D, et al. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks. FEMS Microbiology Ecology. 2018;94: fiy154. doi: 10.1093/femsec/fiy154 PubMed DOI PMC
Petersen J, Brinkmann H, Berger M, Brinkhoff T, Päuker O, Pradella S. Origin and Evolution of a Novel DnaA-Like Plasmid Replication Type in Rhodobacterales. Molecular Biology and Evolution. 2011;28: 1229–1240. doi: 10.1093/molbev/msq310 PubMed DOI
Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, Hensler M, et al. Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: Energetic costs of plasmids assessed by quantitative physiological analyses. Environmental Microbiology. 2016;18: 4817–4829. doi: 10.1111/1462-2920.13381 PubMed DOI
Wünsch D, Strijkstra A, Wöhlbrand L, Freese HM, Scheve S, Hinrichs C, et al. Global Response of Phaeobacter inhibens DSM 17395 to Deletion of Its 262-kb Chromid Encoding Antibiotic Synthesis. Microbial Physiology. 2020;30: 9–24. doi: 10.1159/000508591 PubMed DOI
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. The ISME Journal. 2010;4: 784–798. doi: 10.1038/ismej.2009.150 PubMed DOI
Belas R, Horikawa E, Aizawa S-I, Suvanasuthi R. Genetic Determinants of Silicibacter sp. TM1040 Motility. Journal of Bacteriology. 2009;191: 4502–4512. doi: 10.1128/jb.00429-09 PubMed DOI PMC
Sule P, Belas R. A Novel Inducer of Roseobacter Motility Is Also a Disruptor of Algal Symbiosis. Journal of Bacteriology. 2013;195: 637–646. doi: 10.1128/jb.01777-12 PubMed DOI PMC
Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, Aizawa S-I. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Molecular Microbiology. 1999;34: 767–779. doi: 10.1046/j.1365-2958.1999.01639.x PubMed DOI
Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiology and Molecular Biology Reviews. 2013;77: 1–52. doi: 10.1128/mmbr.00043-12 PubMed DOI PMC
Tomasch J, Wang H, Hall AT, Patzelt D, Preusse M, Petersen J, et al. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biology and Evolution. 2018;10: 359–369. doi: 10.1093/gbe/evy005 PubMed DOI PMC
Craske MW, Wilson JS, Fogg PCM. Gene transfer agents: structural and functional properties of domesticated viruses. Trends in Microbiology. 2024;32: 1200–1211. doi: 10.1016/j.tim.2024.05.002 PubMed DOI
Wang H, Ziesche L, Frank O, Michael V, Martin M, Petersen J, et al. The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae. BMC Genomics. 2014;15: 130. doi: 10.1186/1471-2164-15-130 PubMed DOI PMC
Wu J, Ohta N, Zhao J-L, Newton A. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proceedings of the National Academy of Sciences. 1999;96: 13068–13073. doi: 10.1073/pnas.96.23.13068 PubMed DOI PMC
Mercer RG, Lang AS. Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus. BMC Microbiol. 2014;14: 71. doi: 10.1186/1471-2180-14-71 PubMed DOI PMC
Fogg PCM. Identification and characterization of a direct activator of a gene transfer agent. Nat Commun. 2019;10: 595. doi: 10.1038/s41467-019-08526-1 PubMed DOI PMC
Laass S, Kleist S, Bill N, Drüppel K, Kossmehl S, Wöhlbrand L, et al. Gene Regulatory and Metabolic Adaptation Processes of PubMed DOI PMC
Poggio S, Abreu-Goodger C, Fabela S, Osorio A, Dreyfus G, Vinuesa P, et al. A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides. Journal of Bacteriology. 2007;189: 3208–3216. doi: 10.1128/jb.01681-06 PubMed DOI PMC
Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S. Think pink: photosynthesis, plasmids and the Roseobacter clade. Environmental Microbiology. 2012;14: 2661–2672. doi: 10.1111/j.1462-2920.2012.02806.x PubMed DOI
Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 2018;12: 1994–2010. doi: 10.1038/s41396-018-0150-9 PubMed DOI PMC
Liu Y, Zheng Q, Lin W, Jiao N. Characteristics and Evolutionary Analysis of Photosynthetic Gene Clusters on Extrachromosomal Replicons: from Streamlined Plasmids to Chromids. mSystems. 2019;4: e00358–19. doi: 10.1128/mSystems.00358-19 PubMed DOI PMC
Petersen J, Vollmers J, Ringel V, Brinkmann H, Ellebrandt-Sperling C, Spröer C, et al. A marine plasmid hitchhiking vast phylogenetic and geographic distances. Proceedings of the National Academy of Sciences. 2019;116: 20568–20573. doi: 10.1073/pnas.1905878116 PubMed DOI PMC
Birmes L, Freese HM, Petersen J. RepC_soli: a novel promiscuous plasmid type of Rhodobacteraceae mediates horizontal transfer of antibiotic resistances in the ocean. Environmental Microbiology. 2021;23: 5395–5411. doi: 10.1111/1462-2920.15380 PubMed DOI
Norris V, Madsen MS. Autocatalytic Gene Expression OccursviaTransertion and Membrane Domain Formation and Underlies Differentiation in Bacteria: A Model. Journal of Molecular Biology. 1995;253: 739–748. doi: 10.1006/jmbi.1995.0587 PubMed DOI
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, et al. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. Nat Commun. 2024;15: 5921. doi: 10.1038/s41467-024-50278-0 PubMed DOI PMC
Beyersmann PG, Tomasch J, Son K, Stocker R, Göker M, Wagner-Döbler I, et al. Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens. Sci Rep. 2017;7: 730. doi: 10.1038/s41598-017-00784-7 PubMed DOI PMC
Patzelt D, Wang H, Buchholz I, Rohde M, Gröbe L, Pradella S, et al. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J. 2013;7: 2274–2286. doi: 10.1038/ismej.2013.107 PubMed DOI PMC
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, et al. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics. 2014;15: 730. doi: 10.1186/1471-2164-15-730 PubMed DOI PMC
Koppenhöfer S, Lang AS. Interactions among Redox Regulators and the CtrA Phosphorelay in Dinoroseobacter shibae and Rhodobacter capsulatus. Microorganisms. 2020;8: 562. doi: 10.3390/microorganisms8040562 PubMed DOI PMC
Greene SE, Brilli M, Biondi EG, Komeili A. Analysis of the CtrA Pathway in Magnetospirillum Reveals an Ancestral Role in Motility in Alphaproteobacteria. Journal of Bacteriology. 2012;194: 2973–2986. doi: 10.1128/jb.00170-12 PubMed DOI PMC
Tomasch J, Koppenhöfer S, Lang AS. Connection Between Chromosomal Location and Function of CtrA Phosphorelay Genes in Alphaproteobacteria. Front Microbiol. 2021;12. doi: 10.3389/fmicb.2021.662907 PubMed DOI PMC
Vega-Baray B, Domenzain C, Rivera A, Alfaro-López R, Gómez-César E, Poggio S, et al. The Flagellar Set Fla2 in Rhodobacter sphaeroides Is Controlled by the CckA Pathway and Is Repressed by Organic Acids and the Expression of Fla1. Journal of Bacteriology. 2015;197: 833–847. doi: 10.1128/jb.02429-14 PubMed DOI PMC
Hernández-Valle J, Sanchez-Flores A, Poggio S, Dreyfus G, Camarena L. The CtrA Regulon of Rhodobacter sphaeroides Favors Adaptation to a Particular Lifestyle. Journal of Bacteriology. 2020;202: 10.1128/jb.00678–19. doi: 10.1128/jb.00678-19 PubMed DOI PMC
Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12: 124. doi: 10.1186/1471-2105-12-124 PubMed DOI PMC
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5: 113. doi: 10.1186/1471-2105-5-113 PubMed DOI PMC
Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution. 2000;17: 540–552. doi: 10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution. 2015;32: 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution. 2018;35: 518–522. doi: 10.1093/molbev/msx281 PubMed DOI PMC
Xu S, Li L, Luo X, Chen M, Tang W, Zhan L, et al. Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data. iMeta. 2022;1: e56. doi: 10.1002/imt2.56 PubMed DOI PMC
Petersen J, Brinkmann H, Pradella S. Diversity and evolution of repABC type plasmids in Rhodobacterales. Environmental Microbiology. 2009;11: 2627–2638. doi: 10.1111/j.1462-2920.2009.01987.x PubMed DOI
Koßmehl S, Wöhlbrand L, Drüppel K, Feenders C, Blasius B, Rabus R. Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395. PROTEOMICS. 2013;13: 2743–2760. doi: 10.1002/pmic.201300112 PubMed DOI
Wöhlbrand L, Ruppersberg HS, Feenders C, Blasius B, Braun H-P, Rabus R. Analysis of membrane–protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. PROTEOMICS. 2016;16: 973–988. doi: 10.1002/pmic.201500360 PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930. doi: 10.1093/bioinformatics/btt656 PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. doi: 10.1093/bioinformatics/btp616 PubMed DOI PMC
Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Research. 2025;53: D543–D553. doi: 10.1093/nar/gkae1011 PubMed DOI PMC