Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35254236
PubMed Central
PMC9176285
DOI
10.1099/mgen.0.000787
Knihovny.cz E-zdroje
- Klíčová slova
- Roseobacter, bacteria–algae interaction, conjugation, horizontal gene transfer,
- MeSH
- Dinoflagellata * genetika MeSH
- plazmidy genetika MeSH
- replikon MeSH
- Rhodobacteraceae MeSH
- Roseobacter * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.
Group Genome Analytics Helmholtz Centre for Infection Research Braunschweig Germany
Institute of Microbiology Technical University of Braunschweig Braunschweig Germany
Zobrazit více v PubMed
Ambrose SJ, Harmer CJ, Hall RM. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid. 2018;99:40–55. doi: 10.1016/j.plasmid.2018.08.001. PubMed DOI
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31:e00088-17. doi: 10.1128/CMR.00088-17. PubMed DOI PMC
San Millan A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 2018;26:978–985. doi: 10.1016/j.tim.2018.06.007. PubMed DOI
Harrison PW, Lower RPJ, Kim NKD, Young JPW. Introducing the bacterial “chromid”: not a chromosome, not a plasmid. Trends Microbiol. 2010;18:141–148. doi: 10.1016/j.tim.2009.12.010. PubMed DOI
Petersen J, Frank O, Göker M, Pradella S. Extrachromosomal, extraordinary and essential – the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol. 2013;97:2805–2815. doi: 10.1007/s00253-013-4746-8. PubMed DOI
Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11:1483–1499. doi: 10.1038/ismej.2016.198. PubMed DOI PMC
Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–698. doi: 10.1038/nrmicro3326. PubMed DOI
Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–587. doi: 10.1128/MMBR.00020-14. PubMed DOI PMC
Frank O, Göker M, Pradella S, Petersen J. Ocean’s Twelve: flagellar and biofilm chromids in the multipartite genome of Marinovum algicola DG898 exemplify functional compartmentalization. Environ Microbiol. 2015;17:4019–4034. doi: 10.1111/1462-2920.12947. PubMed DOI
Petersen J, Vollmers J, Ringel V, Brinkmann H, Ellebrandt-Sperling C, et al. A marine plasmid hitchhiking vast phylogenetic and geographic distances. Proc Natl Acad Sci USA. 2019;116:20568–20573. doi: 10.1073/pnas.1905878116. PubMed DOI PMC
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 2018;107:455–471. doi: 10.1111/mmi.13896. PubMed DOI PMC
Petersen J, Wagner-Döbler I. Plasmid transfer in the ocean – a case study from the roseobacter group. Front Microbiol. 2017;8:1350. doi: 10.3389/fmicb.2017.01350. PubMed DOI PMC
Töpel M, Pinder MIM, Johansson ON, Kourtchenko O, Godhe A, et al. Genome sequence of Roseovarius mucosus strain SMR3, isolated from a culture of the diatom Skeletonema marinoi . Genome Announc. 2017;5:e00394-17. doi: 10.1128/genomeA.00394-17. PubMed DOI PMC
Patzelt D, Michael V, Päuker O, Ebert M, Tielen P, et al. Gene flow across genus barriers – conjugation of Dinoroseobacter shibae’s 191-kb killer plasmid into Phaeobacter inhibens and AHL-mediated expression of type IV secretion systems. Front Microbiol. 2016;7:742. doi: 10.3389/fmicb.2016.00742. PubMed DOI PMC
Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis . Nat Chem. 2011;3:331–335. doi: 10.1038/nchem.1002. PubMed DOI PMC
Wang H, Tomasch J, Jarek M, Wagner-Döbler I. A dual-species co-cultivation system to study the interactions between roseobacters and dinoflagellates. Front Microbiol. 2014;5:311. doi: 10.3389/fmicb.2014.00311. PubMed DOI PMC
Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. elife. 2016;5:e17473. doi: 10.7554/eLife.17473. PubMed DOI PMC
Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, et al. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol. 2005;55:1089–1096. doi: 10.1099/ijs.0.63511-0. PubMed DOI
Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77. doi: 10.1038/ismej.2009.94. PubMed DOI
Wang H, Tomasch J, Michael V, Bhuju S, Jarek M, et al. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum . Front Microbiol. 2015;6:1262. doi: 10.3389/fmicb.2015.01262. PubMed DOI PMC
Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera . Int J Syst Evol Microbiol. 2006;56:1293–1304. doi: 10.1099/ijs.0.63724-0. PubMed DOI
Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus . Int J Syst Bacteriol. 1998;48:537–542. doi: 10.1099/00207713-48-2-537. PubMed DOI
Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–2244. doi: 10.1038/ismej.2012.62. PubMed DOI PMC
Frank O, Michael V, Päuker O, Boedeker C, Jogler C, et al. Plasmid curing and the loss of grip – the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol. 2015;38:120–127. doi: 10.1016/j.syapm.2014.12.001. PubMed DOI
Brock NL, Nikolay A, Dickschat JS. Biosynthesis of the antibiotic tropodithietic acid by the marine bacterium Phaeobacter inhibens . Chem Commun. 2014;50:5487–5489. doi: 10.1039/c4cc01924e. PubMed DOI
Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T. Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol. 2011;193:6576–6585. doi: 10.1128/JB.05818-11. PubMed DOI PMC
Wilson MZ, Wang R, Gitai Z, Seyedsayamdost MR. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. Proc Natl Acad Sci USA. 2016;113:1630–1635. doi: 10.1073/pnas.1518034113. PubMed DOI PMC
Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, et al. Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: energetic costs of plasmids assessed by quantitative physiological analyses. Environ Microbiol. 2016;18:4817–4829. doi: 10.1111/1462-2920.13381. PubMed DOI
Will SE, Neumann-Schaal M, Heydorn RL, Bartling P, Petersen J, et al. The limits to growth – energetic burden of the endogenous antibiotic tropodithietic acid in Phaeobacter inhibens DSM 17395. PLoS One. 2017;12:e0177295. doi: 10.1371/journal.pone.0177295. PubMed DOI PMC
Bartling P, Vollmers J, Petersen J. The first world swimming championships of roseobacters – phylogenomic insights into an exceptional motility phenotype. Syst Appl Microbiol. 2018;41:544–554. doi: 10.1016/j.syapm.2018.08.012. PubMed DOI
Stamatakis A. Using RAxML to infer phylogenies. Curr Protoc Bioinformatics. 2015;51:6.14.1–6.14.14. doi: 10.1002/0471250953.bi0614s51. PubMed DOI
Ebert M, Laaß S, Burghartz M, Petersen J, Koßmehl S, et al. Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions. J Bacteriol. 2013;195:4769–4777. doi: 10.1128/JB.00860-13. PubMed DOI PMC
Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, et al. The composite 259-kb plasmid of Martelella mediterranea DSM 17316t – a natural replicon with functional RepABC modules from Rhodobacteraceae and Rhizobiaceae . Front Microbiol. 2017;8:1787. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC
Wickham H. ggplot2. Vol. 55. New York: Springer New York; 2009. Polishing your plots for publication; pp. 139–155. vol.
Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green I. Appl Environ Microbiol. 1997;63:186–193. doi: 10.1128/aem.63.1.186-193.1997. PubMed DOI PMC
Segev E, Tellez A, Vlamakis H, Kolter R. Morphological heterogeneity and attachment of Phaeobacter inhibens . PLoS One. 2015;10:e0141300. doi: 10.1371/journal.pone.0141300. PubMed DOI PMC
Frank O, Pradella S, Rohde M, Scheuner C, Klenk H-P, et al. Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210(T) (= DSM 26640(T) = BS107(T)) Stand Genomic Sci. 2015;9:914–932. doi: 10.4056/sigs.5179110. PubMed DOI PMC
Cui L, Neoh H, Iwamoto A, Hiramatsu K. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci USA. 2012;109:E1647–E1656. doi: 10.1073/pnas.1204307109. PubMed DOI PMC
Birmes L, Freese HM, Petersen J. RepC_soli: a novel promiscuous plasmid type of Rhodobacteraceae mediates horizontal transfer of antibiotic resistances in the ocean. Environ Microbiol. 2021;23:5395–5411. doi: 10.1111/1462-2920.15380. PubMed DOI
Kleist S, Ulbrich M, Bill N, Schmidt-Hohagen K, Geffers R, et al. Dealing with salinity extremes and nitrogen limitation – an unexpected strategy of the marine bacterium Dinoroseobacter shibae . Environ Microbiol. 2017;19:894–908. doi: 10.1111/1462-2920.13266. PubMed DOI
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 2018;12:3014–3024. doi: 10.1038/s41396-018-0224-8. PubMed DOI PMC
Mansky J, Wang H, Ebert M, Härtig E, Jahn D, et al. The Influence of Genes on the “Killer Plasmid” of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum. Front Microbiol. 2022;12 doi: 10.3389/fmicb.2021.804767. PubMed DOI PMC
Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–212. doi: 10.1126/science.aat5867. PubMed DOI
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, et al. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biol Evol. 2018;10:359–369. doi: 10.1093/gbe/evy005. PubMed DOI PMC
Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–5677. doi: 10.1128/AEM.71.10.5665-5677.2005. PubMed DOI PMC
Fiebig A, Pradella S, Petersen J, Michael V, Päuker O, et al. Genome of the marine alphaproteobacterium Hoeflea phototrophica type strain (DFL-43T) Stand Genomic Sci. 2013;7:440–448. doi: 10.4056/sigs.3486982. PubMed DOI PMC
Liu Y, Zheng Q, Lin W, Jiao N. Characteristics and evolutionary analysis of photosynthetic gene clusters on extrachromosomal replicons: from streamlined plasmids to chromids. mSystems. 2019;4:e00358-19. doi: 10.1128/mSystems.00358-19. PubMed DOI PMC
Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, et al. Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol. 2012;14:2661–2672. doi: 10.1111/j.1462-2920.2012.02806.x. PubMed DOI
Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae . ISME J. 2018;12:1994–2010. doi: 10.1038/s41396-018-0150-9. PubMed DOI PMC
Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065. doi: 10.1038/nmicrobiol.2017.65. PubMed DOI
Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. Nat Rev Microbiol. 2012;10:755–765. doi: 10.1038/nrmicro2882. PubMed DOI
Caplan A, Herrera-Estrella L, Inzé D, Van Haute E, Van Montagu M, et al. Introduction of genetic material into plant cells. Science. 1983;222:815–821. doi: 10.1126/science.222.4625.815. PubMed DOI
Gordon JE, Christie PJ. The Agrobacterium Ti plasmids. Microbiol Spectr. 2014;2:2.6.19. doi: 10.1128/microbiolspec.PLAS-0010-2013. PubMed DOI PMC
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, et al. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One. 2018;13:e0200972. doi: 10.1371/journal.pone.0200972. PubMed DOI PMC
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate once per cell cycle: replication control of secondary chromosomes. Front Microbiol. 2018;9:01833. doi: 10.3389/fmicb.2018.01833. PubMed DOI PMC
López JL, Lozano MJ, Lagares A, Fabre ML, Draghi WO, et al. Codon usage heterogeneity in the multipartite prokaryote genome: selection-based coding bias associated with gene location, expression level, and ancestry. mBio. 2019;10:e00505-19. doi: 10.1128/mBio.00505-19. PubMed DOI PMC
Petersen J, Brinkmann H, Pradella S. Diversity and evolution of repABC type plasmids in Rhodobacterales . Environ Microbiol. 2009;11:2627–2638. doi: 10.1111/j.1462-2920.2009.01987.x. PubMed DOI
Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011;45:61–79. doi: 10.1146/annurev-genet-110410-132412. PubMed DOI
Bramucci AR, Labeeuw L, Orata FD, Ryan EM, Malmstrom RR, et al. The bacterial symbiont Phaeobacter inhibens shapes the life history of its algal host Emiliania huxleyi . Front Mar Sci. 2018;5:188
Bramucci AR, Case RJ. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi . Sci Rep. 2019;9:5215. doi: 10.1038/s41598-018-36847-6. PubMed DOI PMC
Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93. doi: 10.1038/nature04056. PubMed DOI
Croft MT, Warren MJ, Smith AG. Algae need their vitamins. Eukaryot Cell. 2006;5:1175–1183. doi: 10.1128/EC.00097-06. PubMed DOI PMC
Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M. The exometabolome of two model strains of the Roseobacter group: a marketplace of microbial metabolites. Front Microbiol. 2017;8:1985. doi: 10.3389/fmicb.2017.01985. PubMed DOI PMC
Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae . ISME J. 2019;13:334–345. doi: 10.1038/s41396-018-0274-y. PubMed DOI PMC
Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101. doi: 10.1038/nature14488. PubMed DOI
Wichard T. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta) Front Plant Sci. 2015;6:86. doi: 10.3389/fpls.2015.00086. PubMed DOI PMC
Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan DJ. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat Microbiol. 2017;2:17100. doi: 10.1038/nmicrobiol.2017.100. PubMed DOI PMC
Teyssier-Cuvelle S, Mougel C, Nesme X. Direct conjugal transfers of Ti plasmid to soil microflora. Mol Ecol. 1999;8:1273–1284. doi: 10.1046/j.1365-294x.1999.00689.x. PubMed DOI
Pilla G, Tang CM. Going around in circles: virulence plasmids in enteric pathogens. Nat Rev Microbiol. 2018;16:484–495. doi: 10.1038/s41579-018-0031-2. PubMed DOI
Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J, et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci USA. 2011;108:E746–E752. doi: 10.1073/pnas.1105107108. PubMed DOI PMC