Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales

. 2022 Mar ; 8 (3) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35254236

The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.

Zobrazit více v PubMed

Ambrose SJ, Harmer CJ, Hall RM. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid. 2018;99:40–55. doi: 10.1016/j.plasmid.2018.08.001. PubMed DOI

Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31:e00088-17. doi: 10.1128/CMR.00088-17. PubMed DOI PMC

San Millan A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 2018;26:978–985. doi: 10.1016/j.tim.2018.06.007. PubMed DOI

Harrison PW, Lower RPJ, Kim NKD, Young JPW. Introducing the bacterial “chromid”: not a chromosome, not a plasmid. Trends Microbiol. 2010;18:141–148. doi: 10.1016/j.tim.2009.12.010. PubMed DOI

Petersen J, Frank O, Göker M, Pradella S. Extrachromosomal, extraordinary and essential – the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol. 2013;97:2805–2815. doi: 10.1007/s00253-013-4746-8. PubMed DOI

Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11:1483–1499. doi: 10.1038/ismej.2016.198. PubMed DOI PMC

Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–698. doi: 10.1038/nrmicro3326. PubMed DOI

Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–587. doi: 10.1128/MMBR.00020-14. PubMed DOI PMC

Frank O, Göker M, Pradella S, Petersen J. Ocean’s Twelve: flagellar and biofilm chromids in the multipartite genome of Marinovum algicola DG898 exemplify functional compartmentalization. Environ Microbiol. 2015;17:4019–4034. doi: 10.1111/1462-2920.12947. PubMed DOI

Petersen J, Vollmers J, Ringel V, Brinkmann H, Ellebrandt-Sperling C, et al. A marine plasmid hitchhiking vast phylogenetic and geographic distances. Proc Natl Acad Sci USA. 2019;116:20568–20573. doi: 10.1073/pnas.1905878116. PubMed DOI PMC

Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 2018;107:455–471. doi: 10.1111/mmi.13896. PubMed DOI PMC

Petersen J, Wagner-Döbler I. Plasmid transfer in the ocean – a case study from the roseobacter group. Front Microbiol. 2017;8:1350. doi: 10.3389/fmicb.2017.01350. PubMed DOI PMC

Töpel M, Pinder MIM, Johansson ON, Kourtchenko O, Godhe A, et al. Genome sequence of Roseovarius mucosus strain SMR3, isolated from a culture of the diatom Skeletonema marinoi . Genome Announc. 2017;5:e00394-17. doi: 10.1128/genomeA.00394-17. PubMed DOI PMC

Patzelt D, Michael V, Päuker O, Ebert M, Tielen P, et al. Gene flow across genus barriers – conjugation of Dinoroseobacter shibae’s 191-kb killer plasmid into Phaeobacter inhibens and AHL-mediated expression of type IV secretion systems. Front Microbiol. 2016;7:742. doi: 10.3389/fmicb.2016.00742. PubMed DOI PMC

Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis . Nat Chem. 2011;3:331–335. doi: 10.1038/nchem.1002. PubMed DOI PMC

Wang H, Tomasch J, Jarek M, Wagner-Döbler I. A dual-species co-cultivation system to study the interactions between roseobacters and dinoflagellates. Front Microbiol. 2014;5:311. doi: 10.3389/fmicb.2014.00311. PubMed DOI PMC

Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. elife. 2016;5:e17473. doi: 10.7554/eLife.17473. PubMed DOI PMC

Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, et al. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol. 2005;55:1089–1096. doi: 10.1099/ijs.0.63511-0. PubMed DOI

Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77. doi: 10.1038/ismej.2009.94. PubMed DOI

Wang H, Tomasch J, Michael V, Bhuju S, Jarek M, et al. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum . Front Microbiol. 2015;6:1262. doi: 10.3389/fmicb.2015.01262. PubMed DOI PMC

Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera . Int J Syst Evol Microbiol. 2006;56:1293–1304. doi: 10.1099/ijs.0.63724-0. PubMed DOI

Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus . Int J Syst Bacteriol. 1998;48:537–542. doi: 10.1099/00207713-48-2-537. PubMed DOI

Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–2244. doi: 10.1038/ismej.2012.62. PubMed DOI PMC

Frank O, Michael V, Päuker O, Boedeker C, Jogler C, et al. Plasmid curing and the loss of grip – the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol. 2015;38:120–127. doi: 10.1016/j.syapm.2014.12.001. PubMed DOI

Brock NL, Nikolay A, Dickschat JS. Biosynthesis of the antibiotic tropodithietic acid by the marine bacterium Phaeobacter inhibens . Chem Commun. 2014;50:5487–5489. doi: 10.1039/c4cc01924e. PubMed DOI

Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T. Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol. 2011;193:6576–6585. doi: 10.1128/JB.05818-11. PubMed DOI PMC

Wilson MZ, Wang R, Gitai Z, Seyedsayamdost MR. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. Proc Natl Acad Sci USA. 2016;113:1630–1635. doi: 10.1073/pnas.1518034113. PubMed DOI PMC

Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, et al. Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: energetic costs of plasmids assessed by quantitative physiological analyses. Environ Microbiol. 2016;18:4817–4829. doi: 10.1111/1462-2920.13381. PubMed DOI

Will SE, Neumann-Schaal M, Heydorn RL, Bartling P, Petersen J, et al. The limits to growth – energetic burden of the endogenous antibiotic tropodithietic acid in Phaeobacter inhibens DSM 17395. PLoS One. 2017;12:e0177295. doi: 10.1371/journal.pone.0177295. PubMed DOI PMC

Bartling P, Vollmers J, Petersen J. The first world swimming championships of roseobacters – phylogenomic insights into an exceptional motility phenotype. Syst Appl Microbiol. 2018;41:544–554. doi: 10.1016/j.syapm.2018.08.012. PubMed DOI

Stamatakis A. Using RAxML to infer phylogenies. Curr Protoc Bioinformatics. 2015;51:6.14.1–6.14.14. doi: 10.1002/0471250953.bi0614s51. PubMed DOI

Ebert M, Laaß S, Burghartz M, Petersen J, Koßmehl S, et al. Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions. J Bacteriol. 2013;195:4769–4777. doi: 10.1128/JB.00860-13. PubMed DOI PMC

Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, et al. The composite 259-kb plasmid of Martelella mediterranea DSM 17316t – a natural replicon with functional RepABC modules from Rhodobacteraceae and Rhizobiaceae . Front Microbiol. 2017;8:1787. PubMed PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC

Wickham H. ggplot2. Vol. 55. New York: Springer New York; 2009. Polishing your plots for publication; pp. 139–155. vol.

Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green I. Appl Environ Microbiol. 1997;63:186–193. doi: 10.1128/aem.63.1.186-193.1997. PubMed DOI PMC

Segev E, Tellez A, Vlamakis H, Kolter R. Morphological heterogeneity and attachment of Phaeobacter inhibens . PLoS One. 2015;10:e0141300. doi: 10.1371/journal.pone.0141300. PubMed DOI PMC

Frank O, Pradella S, Rohde M, Scheuner C, Klenk H-P, et al. Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210(T) (= DSM 26640(T) = BS107(T)) Stand Genomic Sci. 2015;9:914–932. doi: 10.4056/sigs.5179110. PubMed DOI PMC

Cui L, Neoh H, Iwamoto A, Hiramatsu K. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci USA. 2012;109:E1647–E1656. doi: 10.1073/pnas.1204307109. PubMed DOI PMC

Birmes L, Freese HM, Petersen J. RepC_soli: a novel promiscuous plasmid type of Rhodobacteraceae mediates horizontal transfer of antibiotic resistances in the ocean. Environ Microbiol. 2021;23:5395–5411. doi: 10.1111/1462-2920.15380. PubMed DOI

Kleist S, Ulbrich M, Bill N, Schmidt-Hohagen K, Geffers R, et al. Dealing with salinity extremes and nitrogen limitation – an unexpected strategy of the marine bacterium Dinoroseobacter shibae . Environ Microbiol. 2017;19:894–908. doi: 10.1111/1462-2920.13266. PubMed DOI

San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 2018;12:3014–3024. doi: 10.1038/s41396-018-0224-8. PubMed DOI PMC

Mansky J, Wang H, Ebert M, Härtig E, Jahn D, et al. The Influence of Genes on the “Killer Plasmid” of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum. Front Microbiol. 2022;12 doi: 10.3389/fmicb.2021.804767. PubMed DOI PMC

Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–212. doi: 10.1126/science.aat5867. PubMed DOI

Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, et al. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biol Evol. 2018;10:359–369. doi: 10.1093/gbe/evy005. PubMed DOI PMC

Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–5677. doi: 10.1128/AEM.71.10.5665-5677.2005. PubMed DOI PMC

Fiebig A, Pradella S, Petersen J, Michael V, Päuker O, et al. Genome of the marine alphaproteobacterium Hoeflea phototrophica type strain (DFL-43T) Stand Genomic Sci. 2013;7:440–448. doi: 10.4056/sigs.3486982. PubMed DOI PMC

Liu Y, Zheng Q, Lin W, Jiao N. Characteristics and evolutionary analysis of photosynthetic gene clusters on extrachromosomal replicons: from streamlined plasmids to chromids. mSystems. 2019;4:e00358-19. doi: 10.1128/mSystems.00358-19. PubMed DOI PMC

Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, et al. Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol. 2012;14:2661–2672. doi: 10.1111/j.1462-2920.2012.02806.x. PubMed DOI

Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae . ISME J. 2018;12:1994–2010. doi: 10.1038/s41396-018-0150-9. PubMed DOI PMC

Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065. doi: 10.1038/nmicrobiol.2017.65. PubMed DOI

Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. Nat Rev Microbiol. 2012;10:755–765. doi: 10.1038/nrmicro2882. PubMed DOI

Caplan A, Herrera-Estrella L, Inzé D, Van Haute E, Van Montagu M, et al. Introduction of genetic material into plant cells. Science. 1983;222:815–821. doi: 10.1126/science.222.4625.815. PubMed DOI

Gordon JE, Christie PJ. The Agrobacterium Ti plasmids. Microbiol Spectr. 2014;2:2.6.19. doi: 10.1128/microbiolspec.PLAS-0010-2013. PubMed DOI PMC

Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, et al. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One. 2018;13:e0200972. doi: 10.1371/journal.pone.0200972. PubMed DOI PMC

Fournes F, Val ME, Skovgaard O, Mazel D. Replicate once per cell cycle: replication control of secondary chromosomes. Front Microbiol. 2018;9:01833. doi: 10.3389/fmicb.2018.01833. PubMed DOI PMC

López JL, Lozano MJ, Lagares A, Fabre ML, Draghi WO, et al. Codon usage heterogeneity in the multipartite prokaryote genome: selection-based coding bias associated with gene location, expression level, and ancestry. mBio. 2019;10:e00505-19. doi: 10.1128/mBio.00505-19. PubMed DOI PMC

Petersen J, Brinkmann H, Pradella S. Diversity and evolution of repABC type plasmids in Rhodobacterales . Environ Microbiol. 2009;11:2627–2638. doi: 10.1111/j.1462-2920.2009.01987.x. PubMed DOI

Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011;45:61–79. doi: 10.1146/annurev-genet-110410-132412. PubMed DOI

Bramucci AR, Labeeuw L, Orata FD, Ryan EM, Malmstrom RR, et al. The bacterial symbiont Phaeobacter inhibens shapes the life history of its algal host Emiliania huxleyi . Front Mar Sci. 2018;5:188

Bramucci AR, Case RJ. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi . Sci Rep. 2019;9:5215. doi: 10.1038/s41598-018-36847-6. PubMed DOI PMC

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93. doi: 10.1038/nature04056. PubMed DOI

Croft MT, Warren MJ, Smith AG. Algae need their vitamins. Eukaryot Cell. 2006;5:1175–1183. doi: 10.1128/EC.00097-06. PubMed DOI PMC

Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M. The exometabolome of two model strains of the Roseobacter group: a marketplace of microbial metabolites. Front Microbiol. 2017;8:1985. doi: 10.3389/fmicb.2017.01985. PubMed DOI PMC

Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae . ISME J. 2019;13:334–345. doi: 10.1038/s41396-018-0274-y. PubMed DOI PMC

Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101. doi: 10.1038/nature14488. PubMed DOI

Wichard T. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta) Front Plant Sci. 2015;6:86. doi: 10.3389/fpls.2015.00086. PubMed DOI PMC

Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan DJ. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat Microbiol. 2017;2:17100. doi: 10.1038/nmicrobiol.2017.100. PubMed DOI PMC

Teyssier-Cuvelle S, Mougel C, Nesme X. Direct conjugal transfers of Ti plasmid to soil microflora. Mol Ecol. 1999;8:1273–1284. doi: 10.1046/j.1365-294x.1999.00689.x. PubMed DOI

Pilla G, Tang CM. Going around in circles: virulence plasmids in enteric pathogens. Nat Rev Microbiol. 2018;16:484–495. doi: 10.1038/s41579-018-0031-2. PubMed DOI

Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J, et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci USA. 2011;108:E746–E752. doi: 10.1073/pnas.1105107108. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...