The Sixth Element: a 102-kb RepABC Plasmid of Xenologous Origin Modulates Chromosomal Gene Expression in Dinoroseobacter shibae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35920548
PubMed Central
PMC9426580
DOI
10.1128/msystems.00264-22
Knihovny.cz E-zdroje
- Klíčová slova
- CtrA regulon, Roseobacteraceae, denitrification, heavy metal resistance, plasmid stability, transcriptomics,
- MeSH
- exprese genu MeSH
- plazmidy genetika MeSH
- replikon genetika MeSH
- Rhodobacteraceae * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell's regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the "plasmid paradox."
Department of Biology Memorial University of Newfoundland St John's Newfoundland Canada
Group Genome Analytics Helmholtz Centre for Infection Researchgrid 7490 a Braunschweig Germany
Institute of Microbiology TU Braunschweig Braunschweig Germany
Zobrazit více v PubMed
Wein T, Dagan T. 2020. Plasmid evolution. Curr Biol 30:R1158–R1163. doi:10.1016/j.cub.2020.07.003. PubMed DOI
Mathers AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28:565–591. doi:10.1128/CMR.00116-14. PubMed DOI PMC
Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. 2018. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J 12:1994–2010. doi:10.1038/s41396-018-0150-9. PubMed DOI PMC
Rankin DJ, Rocha EPC, Brown SP. 2011. What traits are carried on mobile genetic elements, and why. Heredity (Edinb) 106:1–10. doi:10.1038/hdy.2010.24. PubMed DOI PMC
Dragoš A, Kiesewalter H, Martin M, Hsu C-Y, Hartmann R, Wechsler T, Eriksen C, Brix S, Drescher K, Stanley-Wall N, Kümmerli R, Kovács ÁT. 2018. Division of labor during biofilm matrix production. Curr Biol 28:1903–1913.e5. doi:10.1016/j.cub.2018.04.046. PubMed DOI PMC
Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, Giess A, Pankhurst LJ, Vaughan A, Grim CJ, Cox HL, Yeh AJ, Modernising Medical Microbiology (MMM) Informatics Group, Sifri CD, Walker AS, Peto TE, Crook DW, Mathers AJ. 2016. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob Agents Chemother 60:3767–3778. doi:10.1128/AAC.00464-16. PubMed DOI PMC
Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA. 2017. Positive selection inhibits gene mobilization and transfer in soil bacterial communities. Nat Ecol Evol 1:1348–1353. doi:10.1038/s41559-017-0250-3. PubMed DOI PMC
Sun L, Alexander HK, Bogos B, Kiviet DJ, Ackermann M, Bonhoeffer S. 2018. Effective polyploidy causes phenotypic delay and influences bacterial evolvability. PLoS Biol 16:e2004644. doi:10.1371/journal.pbio.2004644. PubMed DOI PMC
Rodríguez-Beltrán J, Sørum V, Toll-Riera M, de la Vega C, Peña-Miller R, Millán ÁS. 2020. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc Natl Acad Sci USA 117:15755–15762. doi:10.1073/pnas.2001240117. PubMed DOI PMC
Barton IS, Eagan JL, Nieves-Otero PA, Reynolds IP, Platt TG, Fuqua C. 2021. Co-dependent and interdigitated: dual quorum sensing systems regulate conjugative transfer of the Ti plasmid and the At megaplasmid in Agrobacterium tumefaciens 15955. Front Microbiol 11:605896. doi:10.3389/fmicb.2020.605896. PubMed DOI PMC
Baharoglu Z, Bikard D, Mazel D. 2010. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6:e1001165. doi:10.1371/journal.pgen.1001165. PubMed DOI PMC
Rodríguez-Beltrán J, DelaFuente J, León-Sampedro R, MacLean RC, San Millán Á. 2021. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 19:347–359. doi:10.1038/s41579-020-00497-1. PubMed DOI
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. 2019. The SOS system: a complex and tightly regulated response to DNA damage. Environ Mol Mutagen 60:368–384. doi:10.1002/em.22267. PubMed DOI PMC
Kyslik P, Dobisova M, Maresova H, Sobotkova L. 1993. Plasmid burden in chemostat culture of Escherichia coli: its effect on the selection for overproducers of host enzymes. Biotechnol Bioeng 41:325–329. doi:10.1002/bit.260410306. PubMed DOI
Wong Ng J, Chatenay D, Robert J, Poirier MG. 2010. Plasmid copy number noise in monoclonal populations of bacteria. Phys Rev E Stat Nonlin Soft Matter Phys 81:011909. doi:10.1103/PhysRevE.81.011909. PubMed DOI
Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, Hensler M, Michael V, Ruppersberg H, Wünsch D, Feenders C, Neumann-Schaal M, Kaltenhäuser S, Ulbrich M, Schmidt-Hohagen K, Blasius B, Petersen J, Schomburg D, Rabus R. 2016. Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: energetic costs of plasmids assessed by quantitative physiological analyses. Environ Microbiol 18:4817–4829. doi:10.1111/1462-2920.13381. PubMed DOI
Harms A, Brodersen DE, Mitarai N, Gerdes K. 2018. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell 70:768–784. doi:10.1016/j.molcel.2018.01.003. PubMed DOI
Slater FR, Bailey MJ, Tett AJ, Turner SL. 2008. Progress towards understanding the fate of plasmids in bacterial communities. FEMS Microbiol Ecol 66:3–13. doi:10.1111/j.1574-6941.2008.00505.x. PubMed DOI
Harold FM. 1986. The vital force: a study of bioenergetics. WH Freeman & Co, New York, NY.
Liang KYH, Orata FD, Boucher YF, Case RJ. 2021. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 12:683109. doi:10.3389/fmicb.2021.683109. PubMed DOI PMC
Luo H, Moran MA. 2014. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:573–587. doi:10.1128/MMBR.00020-14. PubMed DOI PMC
Wagner-Döbler I, Biebl H. 2006. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280. doi:10.1146/annurev.micro.60.080805.142115. PubMed DOI
Petersen J, Frank O, Göker M, Pradella S. 2013. Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol 97:2805–2815. doi:10.1007/s00253-013-4746-8. PubMed DOI
Petersen J, Brinkmann H, Pradella S. 2009. Diversity and evolution of repABC type plasmids in Rhodobacterales. Environ Microbiol 11:2627–2638. doi:10.1111/j.1462-2920.2009.01987.x. PubMed DOI
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, Petersen J. 2016. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J 10:2498–2513. doi:10.1038/ismej.2016.30. PubMed DOI PMC
Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. 2015. Plasmid curing and the loss of grip—the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol 38:120–127. doi:10.1016/j.syapm.2014.12.001. PubMed DOI
Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M. 2004. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565. doi:10.1128/AEM.70.4.2560-2565.2003. PubMed DOI PMC
Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, Cypionka H, Daniel R, Drepper T, Gerdts G, Hahnke S, Han C, Jahn D, Kalhoefer D, Kiss H, Klenk H-P, Kyrpides N, Liebl W, Liesegang H, Meincke L, Pati A, Petersen J, Piekarski T, Pommerenke C, Pradella S, Pukall R, Rabus R, Stackebrandt E, Thole S, Thompson L, Tielen P, Tomasch J, von Jan M, Wanphrut N, Wichels A, Zech H, Simon M. 2010. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J 4:61–77. doi:10.1038/ismej.2009.94. PubMed DOI
Patzelt D, Wang H, Buchholz I, Rohde M, Gröbe L, Pradella S, Neumann A, Schulz S, Heyber S, Münch K, Münch R, Jahn D, Wagner-Döbler I, Tomasch J. 2013. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J 7:2274–2286. doi:10.1038/ismej.2013.107. PubMed DOI PMC
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I. 2018. Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random. Genome Biol Evol 10:359–369. doi:10.1093/gbe/evy005. PubMed DOI PMC
Ebert M, Laaß S, Thürmer A, Roselius L, Eckweiler D, Daniel R, Härtig E, Jahn D. 2017. FnrL and three Dnr regulators are used for the metabolic adaptation to low oxygen tension in Dinoroseobacter shibae. Front Microbiol 8:642. doi:10.3389/fmicb.2017.00642. PubMed DOI PMC
Ebert M, Laaß S, Burghartz M, Petersen J, Koßmehl S, Wöhlbrand L, Rabus R, Wittmann C, Tielen P, Jahn D. 2013. Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions. J Bacteriol 195:4769–4777. doi:10.1128/JB.00860-13. PubMed DOI PMC
Patzelt D, Michael V, Päuker O, Ebert M, Tielen P, Jahn D, Tomasch J, Petersen J, Wagner-Döbler I. 2016. Gene flow across genus barriers—conjugation of Dinoroseobacter shibae’s 191-kb killer plasmid into Phaeobacter inhibens and AHL-mediated expression of type IV secretion systems. Front Microbiol 7:742. doi:10.3389/fmicb.2016.00742. PubMed DOI PMC
Wang H, Tomasch J, Michael V, Bhuju S, Jarek M, Petersen J, Wagner-Döbler I. 2015. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum. Front Microbiol 6:1262. doi:10.3389/fmicb.2015.01262. PubMed DOI PMC
Mansky J, Wang H, Ebert M, Härtig E, Jahn D, Tomasch J, Wagner-Döbler I. 2022. The influence of genes on the “killer plasmid” of Dinoroseobacter shibae on its symbiosis with the dinoflagellate Prorocentrum minimum. Front Microbiol 12:804767. doi:10.3389/fmicb.2021.804767. PubMed DOI PMC
Kleist S, Ulbrich M, Bill N, Schmidt-Hohagen K, Geffers R, Schomburg D. 2017. Dealing with salinity extremes and nitrogen limitation—an unexpected strategy of the marine bacterium Dinoroseobacter shibae. Environ Microbiol 19:894–908. doi:10.1111/1462-2920.13266. PubMed DOI
Soora M, Tomasch J, Wang H, Michael V, Petersen J, Engelen B, Wagner-Döbler I, Cypionka H. 2015. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements. Front Microbiol 6:233. doi:10.3389/fmicb.2015.00233. PubMed DOI PMC
Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J. 2019. Integrated transcriptional regulatory network of quorum sensing, replication control, and SOS response in Dinoroseobacter shibae. Front Microbiol 10:803. doi:10.3389/fmicb.2019.00803. PubMed DOI PMC
Pradella S, Allgaier M, Hoch C, Päuker O, Stackebrandt E, Wagner-Döbler I. 2004. Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria. Appl Environ Microbiol 70:3360–3369. doi:10.1128/AEM.70.6.3360-3369.2004. PubMed DOI PMC
Allgaier M, Uphoff H, Felske A, Wagner-Döbler I. 2003. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059. doi:10.1128/AEM.69.9.5051-5059.2003. PubMed DOI PMC
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, Vollmers J, Jarek M, Wagner-Döbler I, Petersen J. 2022. Fatal affairs—conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microb Genom 8:000787. doi:10.1099/mgen.0.000787. PubMed DOI PMC
Petersen J, Brinkmann H, Berger M, Brinkhoff T, Päuker O, Pradella S. 2011. Origin and evolution of a novel DnaA-like plasmid replication type in Rhodobacterales. Mol Biol Evol 28:1229–1240. doi:10.1093/molbev/msq310. PubMed DOI
Berland BR, Bonin DJ, Maestrini SY. 1969. Study of bacteria associated with marine algae in culture. Mar Biol 3:334–335. doi:10.1007/BF00698862. DOI
Koppenhöfer S, Lang AS. 2020. Interactions among redox regulators and the CtrA phosphorelay in Dinoroseobacter shibae and Rhodobacter capsulatus. Microorganisms 8:562. doi:10.3390/microorganisms8040562. PubMed DOI PMC
Laub MT, Chen SL, Shapiro L, Mcadams HH. 2002. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci USA 99:4632–4637. doi:10.1073/pnas.062065699. PubMed DOI PMC
Mignolet J, Panis GL, Viollier PH. 2018. More than a Tad: spatiotemporal control of Caulobacter pili. Curr Opin Microbiol 42:79–86. doi:10.1016/j.mib.2017.10.017. PubMed DOI
Fogg PCM. 2019. Identification and characterization of a direct activator of a gene transfer agent. Nat Commun 10:595. doi:10.1038/s41467-019-08526-1. PubMed DOI PMC
Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, Petersen J. 2017. The composite 259-kb plasmid of Martelella mediterranea DSM 17316T—a natural replicon with functional RepABC modules from Rhodobacteraceae and Rhizobiaceae. Front Microbiol 8:1787. doi:10.3389/fmicb.2017.01787. PubMed DOI PMC
Carroll AC, Wong A. 2018. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol 64:293–304. doi:10.1139/cjm-2017-0609. PubMed DOI
San Millan A, MacLean RC. 2017. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr 5:MTBP-0016-2017. doi:10.1128/microbiolspec.MTBP-0016-2017. PubMed DOI
Will SE, Neumann-Schaal M, Heydorn RL, Bartling P, Petersen J, Schomburg D. 2017. The limits to growth—energetic burden of the endogenous antibiotic tropodithietic acid in Phaeobacter inhibens DSM 17395. PLoS One 12:e0177295. doi:10.1371/journal.pone.0177295. PubMed DOI PMC
Gordon JE, Christie PJ. 2014. The Agrobacterium Ti plasmids. Microbiol Spectr 2:PLAS-0010-2013. doi:10.1128/microbiolspec.PLAS-0010-2013. PubMed DOI PMC
Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM. 2008. The repABC plasmid family. Plasmid 60:19–37. doi:10.1016/j.plasmid.2008.03.001. PubMed DOI
Pinto UM, Pappas KM, Winans SC. 2012. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10:755–765. doi:10.1038/nrmicro2882. PubMed DOI
González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G. 2006. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839. doi:10.1073/pnas.0508502103. PubMed DOI PMC
Raymond C, Tom R, Perret S, Moussouami P, L’Abbé D, St-Laurent G, Durocher Y. 2011. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55:44–51. doi:10.1016/j.ymeth.2011.04.002. PubMed DOI
Wang H, Tomasch J, Jarek M, Wagner-Döbler I. 2014. A dual-species co-cultivation system to study the interactions between roseobacters and dinoflagellates. Front Microbiol 5:311. doi:10.3389/fmicb.2014.00311. PubMed DOI PMC
Wang H, Ziesche L, Frank O, Michael V, Martin M, Petersen J, Schulz S, Wagner-Döbler I, Tomasch J. 2014. The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae. BMC Genomics 15:130. doi:10.1186/1471-2164-15-130. PubMed DOI PMC
Westbye AB, Beatty JT, Lang AS, Rice P. 2017. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol 38:122–129. doi:10.1016/j.mib.2017.05.003. PubMed DOI
Bedrunka P, Olbrisch F, Rüger M, Zehner S, Frankenberg-Dinkel N. 2018. Nitric oxide controls c-di-GMP turnover in Dinoroseobacter shibae. Microbiology (Reading) 164:1405–1415. doi:10.1099/mic.0.000714. PubMed DOI
Paget M, Helmann J. 2003. Protein family review—the sigma(70) family of sigma factors. Genome Biol 4:203–206. doi:10.1186/gb-2003-4-1-203. PubMed DOI PMC
Nieto Penalver CG, Cantet F, Morin D, Haras D, Vorholt JA. 2006. A plasmid-borne truncated luxI homolog controls quorum-sensing systems and extracellular carbohydrate production in Methylobacterium extorquens AM1. J Bacteriol 188:7321–7324. doi:10.1128/JB.00649-06. PubMed DOI PMC
Hall JPJ, Wright RCT, Guymer D, Harrison E, Brockhurst MA. 2020. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways. Microbiology (Reading) 166:56–62. doi:10.1099/mic.0.000862. PubMed DOI
Galardini M, Brilli M, Spini G, Rossi M, Roncaglia B, Bani A, Chiancianesi M, Moretto M, Engelen K, Bacci G, Pini F, Biondi EG, Bazzicalupo M, Mengoni A. 2015. Evolution of intra-specific regulatory networks in a multipartite bacterial genome. PLoS Comput Biol 11:e1004478. doi:10.1371/journal.pcbi.1004478. PubMed DOI PMC
Fei F, diCenzo GC, Bowdish DME, McCarry BE, Finan TM. 2016. Effects of synthetic large-scale genome reduction on metabolism and metabolic preferences in a nutritionally complex environment. Metabolomics 12:23. doi:10.1007/s11306-015-0928-y. DOI
diCenzo GC, Wellappili D, Brian Golding G, Finan TM. 2018. Inter-replicon gene flow contributes to transcriptional integration in the Sinorhizobium meliloti multipartite genome. G3 (Bethesda) 8:1711–1720. doi:10.1534/g3.117.300405. PubMed DOI PMC
Vial L, Hommais F. 2020. Plasmid‐chromosome cross‐talks. Environ Microbiol 22:540–556. doi:10.1111/1462-2920.14880. PubMed DOI
Agnoli K, Schwager S, Uehlinger S, Vergunst A, Viteri DF, Nguyen DT, Sokol PA, Carlier A, Eberl L. 2012. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Mol Microbiol 83:362–378. doi:10.1111/j.1365-2958.2011.07937.x. PubMed DOI
Wünsch D, Strijkstra A, Wöhlbrand L, Freese HM, Scheve S, Hinrichs C, Trautwein K, Maczka M, Petersen J, Schulz S, Overmann J, Rabus R. 2020. Global response of Phaeobacter inhibens DSM 17395 to deletion of its 262-kb chromid encoding antibiotic synthesis. Microb Physiol 30:9–24. doi:10.1159/000508591. PubMed DOI
Ding H, Moksa MM, Hirst M, Beatty JT. 2014. Draft genome sequences of six Rhodobacter capsulatus strains, YW1, YW2, B6, Y262, R121, and DE442. Genome Announc 2:e00050-14. doi:10.1128/genomeA.00050-14. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. . 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
Tenenbaum D. 2016. KEGGREST: client-side REST access to KEGG.
Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27. PubMed DOI PMC
Yoon MY, Lee K-M, Park Y, Yoon SS. 2011. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 6:e16105. doi:10.1371/journal.pone.0016105. PubMed DOI PMC
Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. doi:10.1101/gr.2289704. PubMed DOI PMC
Darling AE, Mau B, Perna NT. 2010. Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. doi:10.1371/journal.pone.0011147. PubMed DOI PMC
Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. 2011. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12:124. doi:10.1186/1471-2105-12-124. PubMed DOI PMC
Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, Wagner-Döbler I. 2005. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096. doi:10.1099/ijs.0.63511-0. PubMed DOI