The Influence of Genes on the "Killer Plasmid" of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum

. 2021 ; 12 () : 804767. [epub] 20220128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35154034

The marine bacterium Dinoroseobacter shibae shows a Jekyll-and-Hyde behavior in co-culture with the dinoflagellate Prorocentrum minimum: In the initial symbiotic phase it provides the essential vitamins B12 (cobalamin) and B1 (thiamine) to the algae. In the later pathogenic phase it kills the dinoflagellate. The killing phenotype is determined by the 191 kb plasmid and can be conjugated into other Roseobacters. From a transposon-library of D. shibae we retrieved 28 mutants whose insertion sites were located on the 191 kb plasmid. We co-cultivated each of them with P. minimum in L1 medium lacking vitamin B12. With 20 mutant strains no algal growth beyond the axenic control lacking B12 occurred. Several of these genes were predicted to encode proteins from the type IV secretion system (T4SS). They are apparently essential for establishing the symbiosis. With five transposon mutant strains, the initial symbiotic phase was intact but the later pathogenic phase was lost in co-culture. In three of them the insertion sites were located in an operon predicted to encode genes for biotin (B7) uptake. Both P. minimum and D. shibae are auxotrophic for biotin. We hypothesize that the bacterium depletes the medium from biotin resulting in apoptosis of the dinoflagellate.

Zobrazit více v PubMed

Amin S. A., Hmelo L. R., Van Tol H. M., Durham B. P., Carlson L. T., Heal K. R., et al. (2015). Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522 98–101. 10.1038/nature14488 PubMed DOI

Behrenfeld M. J., Randerson J. T., McClain C. R., Feldman G. C., Los S. O., Tucker C. J., et al. (2001). Biospheric primary production during an ENSO transition. Science 291 2594–2597. 10.1126/SCIENCE.1055071 PubMed DOI

Bidle K. D. (2015). The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 7 341–375. 10.1146/annurev-marine-010213-135014 PubMed DOI

Brinkhoff T., Giebel H.-A., Simon M. (2008). Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch. Microbiol. 189 531–539. 10.1007/s00203-008-0353-y PubMed DOI

Cooper M. B., Kazamia E., Helliwell K. E., Kudahl U. J., Sayer A., Wheeler G. L., et al. (2019). Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 13 334–345. 10.1038/s41396-018-0274-y PubMed DOI PMC

Croft M. T., Lawrence A. D., Raux-Deery E., Warren M. J., Smith A. G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438 90–93. 10.1038/nature04056 PubMed DOI

Croft M. T., Warren M. J., Smith A. G. (2006). Algae need their vitamins. Eukaryot. Cell 5 1175–1183. 10.1128/EC.00097-06 PubMed DOI PMC

Dang H., Li T., Chen M., Huang G. (2008). Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74 52–60. 10.1128/AEM.01400-07 PubMed DOI PMC

Dang H., Lovell C. R. (2000). Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66 467–475. 10.1128/AEM.66.2.467-475.2000 PubMed DOI PMC

Durham B. P., Dearth S. P., Sharma S., Amin S. A., Smith C. B., Campagna S. R., et al. (2017). Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ. Microbiol. 19 3500–3513. 10.1111/1462-2920.13834 PubMed DOI

Ebert M., Laaß S., Burghartz M., Petersen J., Koßmehl S., Wöhlbrand L., et al. (2013). Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions. J. Bacteriol. 195 4769–4777. 10.1128/JB.00860-13 PubMed DOI PMC

Feng X., Chu X., Qian Y., Henson M. W., Lanclos V. C., Qin F., et al. (2021). Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME J. 15 3576–3586. 10.1038/s41396-021-01036-3 PubMed DOI PMC

Field C. B., Behrenfeld M. J., Randerson J. T., Falkowski P. G. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281 237–240. 10.1126/science.281.5374.237 PubMed DOI

Finkenwirth F., Kirsch F., Eitinger T. (2013). Solitary BioY proteins mediate biotin transport into recombinant Escherichia coli. J. Bacteriol. 195 4105–4111. 10.1128/JB.00350-13 PubMed DOI PMC

Geng H., Belas R. (2010). Molecular mechanisms underlying roseobacter-phytoplankton symbioses. Curr. Opin. Biotechnol. 21 332–338. 10.1016/j.copbio.2010.03.013 PubMed DOI

Giebel H. A., Kalhoefer D., Lemke A., Thole S., Gahl-Janssen R., Simon M., et al. (2011). Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J. 5 8–19. 10.1038/ismej.2010.87 PubMed DOI PMC

Hebbeln P., Rodionov D. A., Alfandega A., Eitinger T. (2007). Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc. Natl. Acad. Sci. U. S. A. 104 2909–2914. 10.1073/pnas.0609905104 PubMed DOI PMC

Hogle S. L., Brahamsha B., Barbeau K. A. (2017). Direct heme uptake by phytoplankton-associated Roseobacter bacteria. mSystems 2 e00124–16. 10.1128/mSystems.00124-16 PubMed DOI PMC

Hördt A., López M. G., Meier-Kolthoff J. P., Schleuning M., Weinhold L. M., Tindall B. J., et al. (2020). Analysis of 1,000+ Type-Strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 11:468. 10.3389/fmicb.2020.00468 PubMed DOI PMC

Johnsen G., Nelson N. B., Jovine R. V. M., Prezelin B. B. (1994). Chromoprotein-dependent and pigment-Dependent modeling of spectral light-absorption in 2 dinoflagellates, Prorocentrum minimum and Heterocapsa pygmaea. Mar. Ecol. Ser. 114 245–258.

Lacroix B., Citovsky V. (2016). Transfer of DNA from bacteria to eukaryotes. MBio 7 e00863–16. 10.1128/mBio.00863-16 PubMed DOI PMC

Li J., Brader G., Helenius E., Kariola T., Palva E. T. (2012). Biotin deficiency causes spontaneous cell death and activation of defense signaling. Plant J. 70 315–326. 10.1111/j.1365-313X.2011.04871.x PubMed DOI

Li S., Chen M., Chen Y., Tong J., Wang L., Xu Y., et al. (2019). Epibiotic bacterial community composition in red-tide dinoflagellate Akashiwo sanguinea culture under various growth conditions. FEMS Microbiol. Ecol. 95:fiz057. 10.1093/femsec/fiz057 PubMed DOI

Liang K. Y. H., Orata F. D., Boucher Y. F., Case R. J., Kyh L., Fd O., et al. (2021). Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front. Microbiol. 12:683109. 10.3389/fmicb.2021.683109 PubMed DOI PMC

Luo H., Moran M. A. (2014). Evolutionary ecology of the marine Roseobacter Clade. Microbiol. Mol. Biol. Rev. 78 573–587. 10.1128/MMBR.00020-14 PubMed DOI PMC

Moran M. A., Belas R., Schell M. A., González J. M., Sun F., Sun S., et al. (2007). Ecological genomics of marine roseobacters. Appl. Environ. Microbiol. 73 4559–4569. 10.1128/AEM.02580-06 PubMed DOI PMC

Moran M. A., Reisch C. R., Kiene R. P., Whitman W. B. (2012). Genomic insights into bacterial DMSP transformations. Ann. Rev. Mar. Sci. 4 523–542. 10.1146/annurev-marine-120710-100827 PubMed DOI

Newton R. J., Griffin L. E., Bowles K. M., Meile C., Gifford S., Givens C. E., et al. (2010). Genome characteristics of a generalist marine bacterial lineage. ISME J. 4 784–798. 10.1038/ismej.2009.150 PubMed DOI

Odenbreit S., Püls J., Sedlmaier B., Gerland E., Fischer W., Haas R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by Type IV secretion. Science 287 1497–1500. 10.1126/science.287.5457.1497 PubMed DOI

Patzelt D., Michael V., Päuker O., Ebert M., Tielen P., Jahn D., et al. (2016). Gene flow across genus barriers – Conjugation of Dinoroseobacter shibae’s 191-kb killer plasmid into Phaeobacter inhibens and AHL-mediated expression of type IV secretion systems. Front. Microbiol. 7:742. 10.3389/fmicb.2016.00742 PubMed DOI PMC

Petersen J., Brinkmann H., Bunk B., Michael V., Päuker O., Pradella S. (2012). Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ. Microbiol. 14 2661–2672. 10.1111/j.1462-2920.2012.02806.x PubMed DOI

Petersen J., Frank O., Göker M., Pradella S. (2013). Extrachromosomal, extraordinary and essential - The plasmids of the Roseobacter clade. Appl. Microbiol. Biotechnol. 97 2805–2815. 10.1007/s00253-013-4746-8 PubMed DOI

Pujalte M. J., Lucena T., Ruvira M. A., Arahal D. R., Macián M. C. (2014). “The Family Rhodobacteraceae,” in The Prokaryotes, eds Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (Berlin: Springer; ), 439–512. 10.1007/978-3-642-30197-1_377 DOI

Ramanan R., Kim B. H., Cho D. H., Oh H. M., Kim H. S. (2016). Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34 14–29. 10.1016/j.biotechadv.2015.12.003 PubMed DOI

Rodionov D. A., Hebbeln P., Gelfand M. S., Eitinger T. (2006). Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188 317–327. 10.1128/JB.188.1.317-327.2006 PubMed DOI PMC

Rousseaux C., Gregg W. (2013). Interannual variation in phytoplankton primary production at a global scale. Remote Sens. 6 1–19. 10.3390/rs6010001 DOI

Salta M., Wharton J. A., Blache Y., Stokes K. R., Briand J. F. (2013). Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 15 2879–2893. 10.1111/1462-2920.12186 PubMed DOI

Sanudo-Wilhelmy S. A., Cutter L. S., Durazo R., Smail E. A., Gomez-Consarnau L., Webb E. A., et al. (2012). Multiple B-vitamin depletion in large areas of the coastal ocean. Proc. Natl. Acad. Sci. U. S. A. 109 14041–14045. 10.1073/pnas.1208755109 PubMed DOI PMC

Segev E., Wyche T. P., Kim K. H., Petersen J., Ellebrandt C., Vlamakis H., et al. (2016). Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife 5:e17473. 10.7554/eLife.17473 PubMed DOI PMC

Seyedsayamdost M. R., Carr G., Kolter R., Clardy J. (2011a). Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J. Am. Chem. Soc. 133 18343–18349. 10.1021/ja207172s PubMed DOI PMC

Seyedsayamdost M. R., Case R. J., Kolter R., Clardy J. (2011b). The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3 331–335. 10.1016/j.surg.2006.10.010.Use PubMed DOI PMC

Seymour J. R., Amin S. A., Raina J.-B., Stocker R. (2017). Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2:17065. 10.1038/nmicrobiol.2017.65 PubMed DOI

Siche S., Neubauer O., Hebbeln P., Eitinger T. (2010). A bipartite S unit of an ECF-type cobalt transporter. Res. Microbiol. 161 824–829. 10.1016/j.resmic.2010.09.010 PubMed DOI

Simon M., Scheuner C., Meier-Kolthoff J. P., Brinkhoff T., Wagner-Döbler I., Ulbrich M., et al. (2017). Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11 1483–1499. 10.1038/ismej.2016.198 PubMed DOI PMC

Slightom R. N., Buchan A. (2009). Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl. Environ. Microbiol. 75 6027–6037. 10.1128/AEM.01508-09 PubMed DOI PMC

Smith A. G., Croft M. T., Moulin M., Webb M. E. (2007). Plants need their vitamins too. Curr. Opin. Plant Biol. 10 266–275. 10.1016/j.pbi.2007.04.009 PubMed DOI

Souza D. P., Oka G. U., Alvarez-Martinez C. E., Bisson-Filho A. W., Dunger G., Hobeika L., et al. (2015). Bacterial killing via a type IV secretion system. Nat. Commun. 6:6453. 10.1038/ncomms7453 PubMed DOI

Streit W. R., Entcheva P. (2003). Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl. Microbiol. Biotechnol. 61 21–31. 10.1007/s00253-002-1186-2 PubMed DOI

Tang Y. Z., Koch F., Gobler C. J. (2010). Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc. Natl. Acad. Sci. U. S. A. 107 20756–20761. 10.1073/pnas.1009566107 PubMed DOI PMC

Tomasch J., Ringel V., Wang H., Freese H. M., Bartling P., Brinkmann H., et al. (2021). Fatal affairs – conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacteraceae. Microb. Genomics. PubMed PMC

Tong L. (2013). Structure and function of biotin-dependent carboxylases. Cell. Mol. Life Sci. 70 863–891. 10.1007/s00018-012-1096-0 PubMed DOI PMC

Wagner-Döbler I., Ballhausen B., Berger M., Brinkhoff T., Buchholz I., Bunk B., et al. (2010). The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 4 61–77. 10.1038/ismej.2009.94 PubMed DOI

Wagner-Döbler I., Biebl H. (2006). Environmental biology of the marine Roseobacter lineage. Annu. Rev. Microbiol. 60 255–280. 10.1146/annurev.micro.60.080805.142115 PubMed DOI

Wang H., Tomasch J., Jarek M., Wagner-Döbler I. (2014). A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front. Microbiol. 5:311. 10.3389/fmicb.2014.00311 PubMed DOI PMC

Wang H., Tomasch J., Michael V., Bhuju S., Jarek M., Petersen J., et al. (2015). Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum. Front. Microbiol. 6:1262. 10.3389/fmicb.2015.01262 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...