Optimized OPEP Force Field for Simulation of Crowded Protein Solutions

. 2023 Apr 27 ; 127 (16) : 3616-3623. [epub] 20230418

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37071827

Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.

Zobrazit více v PubMed

Ellis R. J.; Minton A. P. Join the crowd. Nature 2003, 425, 27–28. 10.1038/425027a. PubMed DOI

Mittal S.; Chowhan R. K.; Singh L. R. Macromolecular crowding: Macromolecules friend or foe. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1822–1831. 10.1016/j.bbagen.2015.05.002. PubMed DOI

Kuznetsova I. M.; Turoverov K. K.; Uversky V. N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. 10.3390/ijms151223090. PubMed DOI PMC

Muramatsu N.; Minton A. P. Tracer diffusion of globular proteins in concentrated protein solutions. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 2984–2988. 10.1073/pnas.85.9.2984. PubMed DOI PMC

Kekenes-Huskey P. M.; Eun C.; McCammon J. A. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling. J. Chem. Phys. 2015, 143, 094103.10.1063/1.4929528. PubMed DOI PMC

Gruebele M.; Thirumalai D. Perspective: Reaches of chemical physics in biology. J. Chem. Phys. 2013, 139, 121701.10.1063/1.4820139. PubMed DOI PMC

Yu I.; Mori T.; Ando T.; Harada R.; Jung J.; Sugita Y.; Feig M. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 2016, 5, e1927410.7554/eLife.19274. PubMed DOI PMC

von Bülow S.; Siggel M.; Linke M.; Hummer G. Dynamic cluster formation determines viscosity and diffusion in dense protein solutions. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9843–9852. 10.1073/pnas.1817564116. PubMed DOI PMC

McGuffee S. R.; Elcock A. H. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 2010, 6, e100069410.1371/journal.pcbi.1000694. PubMed DOI PMC

Ando T.; Skolnick J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18457–18462. 10.1073/pnas.1011354107. PubMed DOI PMC

Nawrocki G.; Wang P.-h.; Yu I.; Sugita Y.; Feig M. Slow-down in diffusion in crowded protein solutions correlates with transient cluster formation. J. Phys. Chem. B 2017, 121, 11072–11084. 10.1021/acs.jpcb.7b08785. PubMed DOI PMC

Sterpone F.; Melchionna S.; Tuffery P.; Pasquali S.; Mousseau N.; Cragnolini T.; Chebaro Y.; St-Pierre J.-F.; Kalimeri M.; Barducci A.; et al. The OPEP protein model: From single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem. Soc. Rev. 2014, 43, 4871–4893. 10.1039/C4CS00048J. PubMed DOI PMC

Sterpone F.; Derreumaux P.; Melchionna S. Protein simulations in fluids: Coupling the OPEP coarse-grained force field with hydrodynamics. J. Chem. Theory Comput. 2015, 11, 1843–1853. 10.1021/ct501015h. PubMed DOI PMC

Timr S.; Sterpone F. Stabilizing or destabilizing: Simulations of chymotrypsin inhibitor 2 under crowding reveal existence of a crossover temperature. J. Phys. Chem. Lett. 2021, 12, 1741–1746. 10.1021/acs.jpclett.0c03626. PubMed DOI

Chiricotto M.; Melchionna S.; Derreumaux P.; Sterpone F. Hydrodynamic effects on β-amyloid (16–22) peptide aggregation. J. Chem. Phys. 2016, 145, 035102.10.1063/1.4958323. PubMed DOI

Chiricotto M.; Melchionna S.; Derreumaux P.; Sterpone F. Multiscale aggregation of the amyloid Aβ16–22 peptide: From disordered coagulation and lateral branching to amorphous prefibrils. J. Phys. Chem. Lett. 2019, 10, 1594–1599. 10.1021/acs.jpclett.9b00423. PubMed DOI

Sterpone F.; Derreumaux P.; Melchionna S. Molecular mechanism of protein unfolding under shear: A lattice Boltzmann molecular dynamics study. J. Phys. Chem. B 2018, 122, 1573–1579. 10.1021/acs.jpcb.7b10796. PubMed DOI

Brandner A. F.; Timr S.; Melchionna S.; Derreumaux P.; Baaden M.; Sterpone F. Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics. Sci. Rep. 2019, 9, 16450.10.1038/s41598-019-52760-y. PubMed DOI PMC

Languin-Cattoën O.; Laborie E.; Yurkova D. O.; Melchionna S.; Derreumaux P.; Belyaev A. V.; Sterpone F. Exposure of von Willebrand factor cleavage site in A1A2A3-fragment under extreme hydrodynamic shear. Polymers 2021, 13, 3912.10.3390/polym13223912. PubMed DOI PMC

Timr S.; Gnutt D.; Ebbinghaus S.; Sterpone F. The unfolding journey of superoxide dismutase 1 barrels under crowding: Atomistic simulations shed light on intermediate states and their interactions with crowders. J. Phys. Chem. Lett. 2020, 11, 4206–4212. 10.1021/acs.jpclett.0c00699. PubMed DOI

Sterpone F.; Nguyen P. H.; Kalimeri M.; Derreumaux P. Importance of the ion-pair interactions in the OPEP coarse-grained force field: Parametrization and validation. J. Chem. Theory Comput. 2013, 9, 4574–4584. 10.1021/ct4003493. PubMed DOI PMC

Marino S. M.; Gladyshev V. N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 2010, 404, 902–916. 10.1016/j.jmb.2010.09.027. PubMed DOI PMC

Dignon G. L.; Zheng W.; Kim Y. C.; Best R. B.; Mittal J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 2018, 14, e100594110.1371/journal.pcbi.1005941. PubMed DOI PMC

Tan C.; Jung J.; Kobayashi C.; Torre D. U. L.; Takada S.; Sugita Y. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations. PLoS Comput. Biol. 2022, 18, e100957810.1371/journal.pcbi.1009578. PubMed DOI PMC

Ahlrichs P.; Dünweg B. Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Phys. 1999, 111, 8225–8239. 10.1063/1.480156. DOI

Bernaschi M.; Melchionna S.; Succi S.; Fyta M.; Kaxiras E.; Sircar J. K. MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations. Comput. Phys. Commun. 2009, 180, 1495–1502. 10.1016/j.cpc.2009.04.001. DOI

Succi S.The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond; Oxford University Press, 2001.

Benzi R.; Succi S.; Vergassola M. The lattice Boltzmann equation: Theory and applications. Phys. Rep. 1992, 222, 145–197. 10.1016/0370-1573(92)90090-M. DOI

Ortega A.; Amorós D.; De La Torre J. G. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys. J. 2011, 101, 892–898. 10.1016/j.bpj.2011.06.046. PubMed DOI PMC

Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI

Souza P. C. T.; Alessandri R.; Barnoud J.; Thallmair S.; Faustino I.; Grünewald F.; Patmanidis I.; Abdizadeh H.; Bruininks B. M. H.; Wassenaar T. A.; et al. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. 10.1038/s41592-021-01098-3. PubMed DOI

Roosen-Runge F.; Hennig M.; Zhang F.; Jacobs R. M. J.; Sztucki M.; Schober H.; Seydel T.; Schreiber F. Protein self-diffusion in crowded solutions. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 11815–11820. 10.1073/pnas.1107287108. PubMed DOI PMC

Wang Y.; Li C.; Pielak G. J. Effects of proteins on protein diffusion. J. Am. Chem. Soc. 2010, 132, 9392–9397. 10.1021/ja102296k. PubMed DOI PMC

Di Bari D.; Timr S.; Guiral M.; Giudici-Orticoni M.-T.; Seydel T.; Beck C.; Petrillo C.; Derreumaux P.; Melchionna S.; Sterpone F.; et al. Diffusive dynamics of bacterial proteome as a proxy of cell death. ACS Central Sci. 2023, 9, 93–102. 10.1021/acscentsci.2c01078. PubMed DOI PMC

Roos M.; Ott M.; Hofmann M.; Link S.; Rössler E.; Balbach J.; Krushelnitsky A.; Saalwächter K. Coupling and decoupling of rotational and translational diffusion of proteins under crowding conditions. J. Am. Chem. Soc. 2016, 138, 10365–10372. 10.1021/jacs.6b06615. PubMed DOI

Nesmelova I. V.; Skirda V. D.; Fedotov V. D. Generalized concentration dependence of globular protein self-diffusion coefficients in aqueous solutions. Biopolymers 2002, 63, 132–140. 10.1002/bip.10023. PubMed DOI

Keller K. H.; Canales E. R.; Yum S. Tracer and mutual diffusion coefficients of proteins. J. Phys. Chem. 1971, 75, 379–387. 10.1021/j100673a015. PubMed DOI

Balbo J.; Mereghetti P.; Herten D. P.; Wade R. C. The shape of protein crowders is a major determinant of protein diffusion. Biophys. J. 2013, 104, 1576–1584. 10.1016/j.bpj.2013.02.041. PubMed DOI PMC

Li C.; Pielak G. J. Using NMR to distinguish viscosity effects from nonspecific protein binding under crowded conditions. J. Am. Chem. Soc. 2009, 131, 1368–1369. 10.1021/ja808428d. PubMed DOI PMC

Wang Y.; Benton L. A.; Singh V.; Pielak G. J. Disordered protein diffusion under crowded conditions. J. Phys. Chem. Lett. 2012, 3, 2703–2706. 10.1021/jz3010915. PubMed DOI PMC

Nguyen P. H.; Ramamoorthy A.; Sahoo B. R.; Zheng J.; Faller P.; Straub J. E.; Dominguez L.; Shea J.-E.; Dokholyan N. V.; De Simone A.; et al. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021, 121, 2545–2647. 10.1021/acs.chemrev.0c01122. PubMed DOI PMC

Kalwarczyk T.; Tabaka M.; Holyst R. Biologistics—Diffusion coefficients for complete proteome of Escherichia coli. Bioinformatics 2012, 28, 2971–2978. 10.1093/bioinformatics/bts537. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...