Optimized OPEP Force Field for Simulation of Crowded Protein Solutions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37071827
PubMed Central
PMC10150358
DOI
10.1021/acs.jpcb.3c00253
Knihovny.cz E-zdroje
- MeSH
- počítačová simulace MeSH
- proteiny * chemie MeSH
- roztoky MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
- roztoky MeSH
Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.
IAC CNR Via dei Taurini 19 00185 Rome Italy
Institut Universitaire de France 75005 Paris France
Lexma Technology 1337 Massachusetts Avenue Arlington Massachusetts 02476 United States
Zobrazit více v PubMed
Ellis R. J.; Minton A. P. Join the crowd. Nature 2003, 425, 27–28. 10.1038/425027a. PubMed DOI
Mittal S.; Chowhan R. K.; Singh L. R. Macromolecular crowding: Macromolecules friend or foe. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1822–1831. 10.1016/j.bbagen.2015.05.002. PubMed DOI
Kuznetsova I. M.; Turoverov K. K.; Uversky V. N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. 10.3390/ijms151223090. PubMed DOI PMC
Muramatsu N.; Minton A. P. Tracer diffusion of globular proteins in concentrated protein solutions. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 2984–2988. 10.1073/pnas.85.9.2984. PubMed DOI PMC
Kekenes-Huskey P. M.; Eun C.; McCammon J. A. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling. J. Chem. Phys. 2015, 143, 094103.10.1063/1.4929528. PubMed DOI PMC
Gruebele M.; Thirumalai D. Perspective: Reaches of chemical physics in biology. J. Chem. Phys. 2013, 139, 121701.10.1063/1.4820139. PubMed DOI PMC
Yu I.; Mori T.; Ando T.; Harada R.; Jung J.; Sugita Y.; Feig M. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 2016, 5, e1927410.7554/eLife.19274. PubMed DOI PMC
von Bülow S.; Siggel M.; Linke M.; Hummer G. Dynamic cluster formation determines viscosity and diffusion in dense protein solutions. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9843–9852. 10.1073/pnas.1817564116. PubMed DOI PMC
McGuffee S. R.; Elcock A. H. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 2010, 6, e100069410.1371/journal.pcbi.1000694. PubMed DOI PMC
Ando T.; Skolnick J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18457–18462. 10.1073/pnas.1011354107. PubMed DOI PMC
Nawrocki G.; Wang P.-h.; Yu I.; Sugita Y.; Feig M. Slow-down in diffusion in crowded protein solutions correlates with transient cluster formation. J. Phys. Chem. B 2017, 121, 11072–11084. 10.1021/acs.jpcb.7b08785. PubMed DOI PMC
Sterpone F.; Melchionna S.; Tuffery P.; Pasquali S.; Mousseau N.; Cragnolini T.; Chebaro Y.; St-Pierre J.-F.; Kalimeri M.; Barducci A.; et al. The OPEP protein model: From single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem. Soc. Rev. 2014, 43, 4871–4893. 10.1039/C4CS00048J. PubMed DOI PMC
Sterpone F.; Derreumaux P.; Melchionna S. Protein simulations in fluids: Coupling the OPEP coarse-grained force field with hydrodynamics. J. Chem. Theory Comput. 2015, 11, 1843–1853. 10.1021/ct501015h. PubMed DOI PMC
Timr S.; Sterpone F. Stabilizing or destabilizing: Simulations of chymotrypsin inhibitor 2 under crowding reveal existence of a crossover temperature. J. Phys. Chem. Lett. 2021, 12, 1741–1746. 10.1021/acs.jpclett.0c03626. PubMed DOI
Chiricotto M.; Melchionna S.; Derreumaux P.; Sterpone F. Hydrodynamic effects on β-amyloid (16–22) peptide aggregation. J. Chem. Phys. 2016, 145, 035102.10.1063/1.4958323. PubMed DOI
Chiricotto M.; Melchionna S.; Derreumaux P.; Sterpone F. Multiscale aggregation of the amyloid Aβ16–22 peptide: From disordered coagulation and lateral branching to amorphous prefibrils. J. Phys. Chem. Lett. 2019, 10, 1594–1599. 10.1021/acs.jpclett.9b00423. PubMed DOI
Sterpone F.; Derreumaux P.; Melchionna S. Molecular mechanism of protein unfolding under shear: A lattice Boltzmann molecular dynamics study. J. Phys. Chem. B 2018, 122, 1573–1579. 10.1021/acs.jpcb.7b10796. PubMed DOI
Brandner A. F.; Timr S.; Melchionna S.; Derreumaux P.; Baaden M.; Sterpone F. Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics. Sci. Rep. 2019, 9, 16450.10.1038/s41598-019-52760-y. PubMed DOI PMC
Languin-Cattoën O.; Laborie E.; Yurkova D. O.; Melchionna S.; Derreumaux P.; Belyaev A. V.; Sterpone F. Exposure of von Willebrand factor cleavage site in A1A2A3-fragment under extreme hydrodynamic shear. Polymers 2021, 13, 3912.10.3390/polym13223912. PubMed DOI PMC
Timr S.; Gnutt D.; Ebbinghaus S.; Sterpone F. The unfolding journey of superoxide dismutase 1 barrels under crowding: Atomistic simulations shed light on intermediate states and their interactions with crowders. J. Phys. Chem. Lett. 2020, 11, 4206–4212. 10.1021/acs.jpclett.0c00699. PubMed DOI
Sterpone F.; Nguyen P. H.; Kalimeri M.; Derreumaux P. Importance of the ion-pair interactions in the OPEP coarse-grained force field: Parametrization and validation. J. Chem. Theory Comput. 2013, 9, 4574–4584. 10.1021/ct4003493. PubMed DOI PMC
Marino S. M.; Gladyshev V. N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 2010, 404, 902–916. 10.1016/j.jmb.2010.09.027. PubMed DOI PMC
Dignon G. L.; Zheng W.; Kim Y. C.; Best R. B.; Mittal J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 2018, 14, e100594110.1371/journal.pcbi.1005941. PubMed DOI PMC
Tan C.; Jung J.; Kobayashi C.; Torre D. U. L.; Takada S.; Sugita Y. Implementation of residue-level coarse-grained models in GENESIS for large-scale molecular dynamics simulations. PLoS Comput. Biol. 2022, 18, e100957810.1371/journal.pcbi.1009578. PubMed DOI PMC
Ahlrichs P.; Dünweg B. Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Phys. 1999, 111, 8225–8239. 10.1063/1.480156. DOI
Bernaschi M.; Melchionna S.; Succi S.; Fyta M.; Kaxiras E.; Sircar J. K. MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations. Comput. Phys. Commun. 2009, 180, 1495–1502. 10.1016/j.cpc.2009.04.001. DOI
Succi S.The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond; Oxford University Press, 2001.
Benzi R.; Succi S.; Vergassola M. The lattice Boltzmann equation: Theory and applications. Phys. Rep. 1992, 222, 145–197. 10.1016/0370-1573(92)90090-M. DOI
Ortega A.; Amorós D.; De La Torre J. G. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys. J. 2011, 101, 892–898. 10.1016/j.bpj.2011.06.046. PubMed DOI PMC
Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI
Souza P. C. T.; Alessandri R.; Barnoud J.; Thallmair S.; Faustino I.; Grünewald F.; Patmanidis I.; Abdizadeh H.; Bruininks B. M. H.; Wassenaar T. A.; et al. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. 10.1038/s41592-021-01098-3. PubMed DOI
Roosen-Runge F.; Hennig M.; Zhang F.; Jacobs R. M. J.; Sztucki M.; Schober H.; Seydel T.; Schreiber F. Protein self-diffusion in crowded solutions. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 11815–11820. 10.1073/pnas.1107287108. PubMed DOI PMC
Wang Y.; Li C.; Pielak G. J. Effects of proteins on protein diffusion. J. Am. Chem. Soc. 2010, 132, 9392–9397. 10.1021/ja102296k. PubMed DOI PMC
Di Bari D.; Timr S.; Guiral M.; Giudici-Orticoni M.-T.; Seydel T.; Beck C.; Petrillo C.; Derreumaux P.; Melchionna S.; Sterpone F.; et al. Diffusive dynamics of bacterial proteome as a proxy of cell death. ACS Central Sci. 2023, 9, 93–102. 10.1021/acscentsci.2c01078. PubMed DOI PMC
Roos M.; Ott M.; Hofmann M.; Link S.; Rössler E.; Balbach J.; Krushelnitsky A.; Saalwächter K. Coupling and decoupling of rotational and translational diffusion of proteins under crowding conditions. J. Am. Chem. Soc. 2016, 138, 10365–10372. 10.1021/jacs.6b06615. PubMed DOI
Nesmelova I. V.; Skirda V. D.; Fedotov V. D. Generalized concentration dependence of globular protein self-diffusion coefficients in aqueous solutions. Biopolymers 2002, 63, 132–140. 10.1002/bip.10023. PubMed DOI
Keller K. H.; Canales E. R.; Yum S. Tracer and mutual diffusion coefficients of proteins. J. Phys. Chem. 1971, 75, 379–387. 10.1021/j100673a015. PubMed DOI
Balbo J.; Mereghetti P.; Herten D. P.; Wade R. C. The shape of protein crowders is a major determinant of protein diffusion. Biophys. J. 2013, 104, 1576–1584. 10.1016/j.bpj.2013.02.041. PubMed DOI PMC
Li C.; Pielak G. J. Using NMR to distinguish viscosity effects from nonspecific protein binding under crowded conditions. J. Am. Chem. Soc. 2009, 131, 1368–1369. 10.1021/ja808428d. PubMed DOI PMC
Wang Y.; Benton L. A.; Singh V.; Pielak G. J. Disordered protein diffusion under crowded conditions. J. Phys. Chem. Lett. 2012, 3, 2703–2706. 10.1021/jz3010915. PubMed DOI PMC
Nguyen P. H.; Ramamoorthy A.; Sahoo B. R.; Zheng J.; Faller P.; Straub J. E.; Dominguez L.; Shea J.-E.; Dokholyan N. V.; De Simone A.; et al. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021, 121, 2545–2647. 10.1021/acs.chemrev.0c01122. PubMed DOI PMC
Kalwarczyk T.; Tabaka M.; Holyst R. Biologistics—Diffusion coefficients for complete proteome of Escherichia coli. Bioinformatics 2012, 28, 2971–2978. 10.1093/bioinformatics/bts537. PubMed DOI PMC