Diffusive Dynamics of Bacterial Proteome as a Proxy of Cell Death
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36712493
PubMed Central
PMC9881203
DOI
10.1021/acscentsci.2c01078
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of E. coli, we clearly show that only a minor fraction of the proteome unfolds at the cell death. First, we prove that the dynamical state of the E. coli proteome is an excellent proxy for temperature-dependent bacterial metabolism and death. The proteome diffusive dynamics peaks at about the bacterial optimal growth temperature, then a dramatic dynamical slowdown is observed that starts just below the cell's death temperature. Next, we show that this slowdown is caused by the unfolding of just a small fraction of proteins that establish an entangling interprotein network, dominated by hydrophobic interactions, across the cytoplasm. Finally, the deduced progress of the proteome unfolding and its diffusive dynamics are both key to correctly reproduce the E. coli growth rate.
Institut Laue Langevin 38000Grenoble France
Institut Universitaire de France 75005Paris France
ISC CNR Dipartimento di Fisica Università Sapienza 00185Rome Italy
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences 182 23Prague 8 Czechia
Lexma Technology1337 Massachusetts Avenue Arlington Massachusetts02476 United States
Zobrazit více v PubMed
Frey S. D.; Lee J.; Melillo J. M.; Six J. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change 2013, 3, 395–398. 10.1038/nclimate1796. DOI
Berezovsky I. N.; Shakhnovich E. I. Physics and evolution of thermophilic adaptation. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12742–12747. 10.1073/pnas.0503890102. PubMed DOI PMC
Coffey D. S.; Getzenberg R. H.; DeWeese T. L. Hyperthermic biology and cancer therapies: a hypothesis for the “Lance Armstrong effect. JAMA 2006, 296, 445–448. 10.1001/jama.296.4.445. PubMed DOI
Kennett J. P.; Stott L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 1991, 353, 225–229. 10.1038/353225a0. DOI
Ivany L. C.; Patterson W. P.; Lohmann K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 2000, 407, 887–890. 10.1038/35038044. PubMed DOI
Allen A. P.; Gillooly J. F.; Savage V. M.; Brown J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 9130–9135. 10.1073/pnas.0603587103. PubMed DOI PMC
Russell A. D. Lethal Effects of Heat on Bacterial Physiology and Structure. Science Progress 2003, 86, 115–137. 10.3184/003685003783238699. PubMed DOI PMC
Mackey B. M.; Miles C. A.; Parsons S. E.; Seymour D. A. Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry. J.Gen. Microbiol. 1991, 137, 2361–2374. 10.1099/00221287-137-10-2361. PubMed DOI
Zeldovich K. B.; Chen P.; Shakhnovich E. I. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16152–16157. 10.1073/pnas.0705366104. PubMed DOI PMC
Dill K. A.; Ghosh K.; Schmit J. D. Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 17876–17882. 10.1073/pnas.1114477108. PubMed DOI PMC
Leuenberger P.; Ganscha S.; Kahraman A.; Cappelletti V.; Boersema P. J.; von Mering C.; Claassen M.; Picotti P. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 2017, 355, na.10.1126/science.aai7825. PubMed DOI
Ghosh K.; Dill K. Cellular proteomes have broad distributions of protein stability. Biophysical journal 2010, 99, 3996–4002. 10.1016/j.bpj.2010.10.036. PubMed DOI PMC
Mateus A.; Bobonis J.; Kurzawa N.; Stein F.; Helm D.; Hevler J.; Typas A.; Savitski M. M. Thermal Proteome Profiling in Bacteria: Probing Protein State in vivo. Molecular systems biology 2018, 14, e824210.15252/msb.20188242. PubMed DOI PMC
Schavemaker P. E.; Boersma A. J.; Poolman B. How important is protein diffusion in prokaryotes?. Frontiers in molecular biosciences 2018, 5, 93.10.3389/fmolb.2018.00093. PubMed DOI PMC
Alsallaq R.; Zhou H. X. Electrostatic rate enhancement and transient complex of protein-protein association. Proteins: Struct. Funct. Genet. 2008, 71, 320–335. 10.1002/prot.21679. PubMed DOI PMC
Schreiber G.; Haran G.; Zhou H. X. Fundamental aspects of protein - Protein association kinetics. Chem. Rev. 2009, 109, 839–860. 10.1021/cr800373w. PubMed DOI PMC
Hennig M.; Roosen-Runge F.; Zhang F.; Zorn S.; Skoda M. W. A.; Jacobs R. M. J.; Seydel T.; Schreiber F. Dynamics of highly concentrated protein solutions around the denaturing transition. Soft Matter 2012, 8, 1628–1633. 10.1039/C1SM06609A. DOI
Grimaldo M.; Roosen-Runge F.; Hennig M.; Zanini F.; Zhang F.; Jalarvo N.; Zamponi M.; Schreiber F.; Seydel Tilo Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Phys. Chem. Chem. Phys. 2015, 17, 4645–4655. 10.1039/C4CP04944F. PubMed DOI
Matsarskaia O.; Bühl L.; Beck C.; Grimaldo M.; Schweins R.; Zhang F.; Seydel T.; Schreiber F.; Roosen-Runge F. Evolution of the structure and dynamics of bovine serum albumin induced by thermal denaturation. Phys. Chem. Chem. Phys. 2020, 22, 18507–18517. 10.1039/D0CP01857K. PubMed DOI
Ellis R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11, 114–119. 10.1016/S0959-440X(00)00172-X. PubMed DOI
Luby-Phelps K. The physical chemistry of cytoplasm and its influence on cell function: An update. Mol. Biol. Cell 2013, 24, 2593–2596. 10.1091/mbc.e12-08-0617. PubMed DOI PMC
Munder M. C.; et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 2016, 5, 1–30. 10.7554/eLife.09347. PubMed DOI PMC
Mourão M. A.; Hakim J. B.; Schnell S. Connecting the dots: The effects of macromolecular crowding on cell physiology. Biophys. J. 2014, 107, 2761–2766. 10.1016/j.bpj.2014.10.051. PubMed DOI PMC
Parry B. R.; et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 2014, 156, 183–194. 10.1016/j.cell.2013.11.028. PubMed DOI PMC
Frick B.; Mamontov E.; Eijck L. v.; Seydel T. Recent backscattering instrument developments at the ILL and SNS. Z. Phys. Chem. 2010, 224, 33–60. 10.1524/zpch.2010.6091. DOI
Bée M.Quasielastic neutron scattering; Adam Hilger: United Kingdom, 1988.
Neidhardt F. C.; Ingraham J. L.; Schaechter M.. Physiology of the Bacterial Cell; a Molecular Approach; Sinauer Associates, 1990.
Jasnin M.; Moulin M.; Haertlein M.; Zaccai G.; Tehei M. In vivo measurement of internal and global macromolecular motions in Escherichia coli. Biophysical journal 2008, 95, 857–864. 10.1529/biophysj.107.124420. PubMed DOI PMC
Pérez J.; Zanotti J.-M.; Durand D. Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophysical Journal 1999, 77, 454–469. 10.1016/S0006-3495(99)76903-1. PubMed DOI PMC
Grimaldo M.; Roosen-Runge F.; Zhang F.; Schreiber F.; Seydel T. Dynamics of proteins in solution. Q. Rev. Biophys. 2019, 52, na.10.1017/S0033583519000027. DOI
Ando T.; Skolnick J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18457–18462. 10.1073/pnas.1011354107. PubMed DOI PMC
McGuffee S. R.; Elcock A. H. Diffusion, crowding, and protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Computational Biology 2010, 6, e1000694.10.1371/journal.pcbi.1000694. PubMed DOI PMC
Yu I.; Mori T.; Ando T.; Harada R.; Jung J.; Sugita Y.; Feig M. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. Elife 2016, 5, e19274.10.7554/eLife.19274. PubMed DOI PMC
von Bülow S.; Siggel M.; Linke M.; Hummer G. Dynamic cluster formation determines viscosity and diffusion in dense protein solutions. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9843–9852. 10.1073/pnas.1817564116. PubMed DOI PMC
Sterpone F.; Melchionna S.; Tuffery P.; Pasquali S.; Mousseau N.; Cragnolini T.; Chebaro Y.; St-Pierre J.-F.; Kalimeri M.; Barducci A.; others; et al. The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem. Soc. Rev. 2014, 43, 4871–4893. 10.1039/C4CS00048J. PubMed DOI PMC
Sterpone F.; Derreumaux P.; Melchionna S. Protein simulations in fluids: Coupling the OPEP coarse-grained force field with hydrodynamics. J. Chem. Theory Comput. 2015, 11, 1843–1853. 10.1021/ct501015h. PubMed DOI PMC
Timr S.; Gnutt D.; Ebbinghaus S.; Sterpone F. The Unfolding Journey of Superoxide Dismutase 1 Barrels under Crowding: Atomistic Simulations Shed Light on Intermediate States and Their Interactions with Crowders. J. Phys. Chem. Lett. 2020, 11, 4206–4212. 10.1021/acs.jpclett.0c00699. PubMed DOI
Kalwarczyk T.; Tabaka M.; Holyst R. Biologistics—Diffusion Coefficients for Complete Proteome of Escherichia coli. Bioinformatics 2012, 28, 2971–2978. 10.1093/bioinformatics/bts537. PubMed DOI PMC
Robustelli P.; Piana S.; Shaw D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E4758–E4766. 10.1073/pnas.1800690115. PubMed DOI PMC
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC
Nawrocki G.; Wang P.-h.; Yu I.; Sugita Y.; Feig M. Slow-down in diffusion in crowded protein solutions correlates with transient cluster formation. J. Phys. Chem. B 2017, 121, 11072–11084. 10.1021/acs.jpcb.7b08785. PubMed DOI PMC
Anson M. L.; Mirsky A. E. The effect of denaturation on the viscosity of protein systems. J. Gen. Physiol. 1932, 15, 341–350. 10.1085/jgp.15.3.341. PubMed DOI PMC
Choi S.; Park J.-K. Microfluidic rheometer for characterization of protein unfolding and aggregation in microflows. Small 2010, 6, 1306–1310. 10.1002/smll.201000210. PubMed DOI
Muñoz R.; Aguilar-Sandoval F.; Bellon L.; Melo F. Detecting protein folding by thermal fluctuations of microcantilevers. PloS one 2017, 12, e018997910.1371/journal.pone.0189979. PubMed DOI PMC
Galush W. J.; Le L. N.; Moore J. M. R. Viscosity behavior of high-concentration protein mixtures. Journal of pharmaceutical sciences 2012, 101, 1012–1020. 10.1002/jps.23002. PubMed DOI
Ghosh A.; Kota D.; Zhou H.-X. Shear relaxation governs fusion dynamics of biomolecular condensates. Nat. Commun. 2021, 12, 1–10. 10.1038/s41467-021-26274-z. PubMed DOI PMC
Salter M. A.; Ross T.; McMeekin T. A. Applicability of a model for non-pathogenic Escherichia coli for predicting the growth of pathogenic Escherichia coli. J. Appl. Microbiol. 1998, 85, 357–364. 10.1046/j.1365-2672.1998.00519.x. PubMed DOI
Sawle L.; Ghosh K. How do thermophilic proteins and proteomes withstand high temperature?. Biophysical journal 2011, 101, 217–227. 10.1016/j.bpj.2011.05.059. PubMed DOI PMC
Stradner A.; Schurtenberger P. Potential and limits of a colloid approach to protein solutions. Soft Matter 2020, 16, 307–323. 10.1039/C9SM01953G. PubMed DOI
Colby R. H. Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheologica acta 2010, 49, 425–442. 10.1007/s00397-009-0413-5. DOI
Sarangapani P. S.; Hudson S. D.; Jones R. L.; Douglas J. F.; Pathak J. A. Critical examination of the colloidal particle model of globular proteins. Biophysical journal 2015, 108, 724–737. 10.1016/j.bpj.2014.11.3483. PubMed DOI PMC
Godfrin P. D.; Valadez-Pérez N. E; Castaneda-Priego R.; Wagner N. J.; Liu Y. Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions. Soft Matter 2014, 10, 5061–5071. 10.1039/C3SM53220H. PubMed DOI
Zhang Z.; Liu Y. Recent progresses of understanding the viscosity of concentrated protein solutions. Current opinion in chemical engineering 2017, 16, 48–55. 10.1016/j.coche.2017.04.001. DOI
Chang R. L.; Andrews K.; Kim D.; Li Z.; Godzik A.; Palsson B. O. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 2013, 340, 1220–1223. 10.1126/science.1234012. PubMed DOI PMC
Jarzab A.; Kurzawa N.; Hopf T.; Moerch M.; Zecha J.; Leijten N.; Bian Y.; Musiol E.; Maschberger M.; Stoehr G.; others; et al. Meltome atlas—thermal proteome stability across the tree of life. Nat. Methods 2020, 17, 495–503. 10.1038/s41592-020-0801-4. PubMed DOI
Patel A.; et al. Atp as a biological hydrotrope. Science 2017, 356, 753–756. 10.1126/science.aaf6846. PubMed DOI
Chen K.; Gao Y.; Mih N.; O’Brien E. J.; Yang L.; Palsson B. O. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 11548–11553. 10.1073/pnas.1705524114. PubMed DOI PMC
Persson L. B.; Ambati V. S.; Brandman O. Cellular control of viscosity counters changes in temperature and energy availability. Cell 2020, 183, 1572–1585. 10.1016/j.cell.2020.10.017. PubMed DOI PMC
Sweetlove L. J.; Fernie A. R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nature Comm 2018, 9, 2136.10.1038/s41467-018-04543-8. PubMed DOI PMC
Xie J.; Najafi J.; Le Borgne R.; Verbavatz J.-M.; Durieu C.; Sallé J.; Minc N. Contribution of cytoplasm viscoelastic properties to mitotic spindle positioning. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2115593119.10.1073/pnas.2115593119. PubMed DOI PMC
Taylor N. O.; Wei M. T.; Stone H. A.; Brangwynne C. P. Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophys. J. 2019, 117, 1285–1300. 10.1016/j.bpj.2019.08.030. PubMed DOI PMC
Peters J.; Di Bari D.; Guiral M.; Giudici Orticoni M. T.; Seydel T.; Sterpone F.; Paciaroni A.. Global proteome dynamics as a proxy for cellular thermal stability; Institut Laue-Langevin (ILL), 2020. PubMed
Di Bari D.; Guiral M.; Giudici Orticoni M. T.; Seydel T.; Sterpone F.; Paciaroni A.; Peters J.. Global proteome dynamics as a proxy for cellular thermal stability; Institut Laue-Langevin (ILL), 2021. PubMed
Arnold O.; Bilheux J.-C.; Borreguero J. M.; Buts A.; Campbell S. I.; Chapon L.; Doucet M.; Draper N.; Leal R. F.; Gigg M. A.; et al. Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2014, 764, 156–166. 10.1016/j.nima.2014.07.029. DOI
Singwi K. S.; Sjölander A. Diffusive motions in water and cold neutron scattering. Phys. Rev. 1960, 119, 863.10.1103/PhysRev.119.863. DOI
Ahlrichs P.; Dünweg B. Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Phys. 1999, 111, 8225–8239. 10.1063/1.480156. DOI
Bernaschi M.; Melchionna S.; Succi S.; Fyta M.; Kaxiras E.; Sircar J. K. MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations. Comput. Phys. Commun. 2009, 180, 1495–1502. 10.1016/j.cpc.2009.04.001. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Optimized OPEP Force Field for Simulation of Crowded Protein Solutions