Evaluation of the relationship between color-tuning of photosynthetic excitons and thermodynamic stability of light-harvesting chromoproteins
Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article
PubMed
39651357
PubMed Central
PMC11558578
DOI
10.32615/ps.2023.022
PII: PS61308
Knihovny.cz E-resources
- Keywords
- Ca-containing bacteria, LH1-RC complex, circular dichroism, hydrostatic high pressure, purple bacteria,
- Publication type
- Journal Article MeSH
Color-tuning is a critical survival mechanism for photosynthetic organisms. Calcium ions are believed to enhance both spectral tuning and thermostability in obligatory calcium-containing sulfur purple bacteria. This study examined the thermo- and piezo stability of the LH1-RC complexes from two calcium-containing sulfur purple bacteria notable for their extreme red-shifted spectra. The results generally show limited reversibility of both temperature and pressure effects related to the malleability of calcium-binding sites. While the pressure-induced decomposition product closely resembles the calcium-depleted form of the chromoproteins, the thermally induced products reveal monomeric B777 and dimeric B820 forms of bacteriochlorophyll a, similar to those seen in non-sulfur purple bacteria treated with detergent. The study further found nearly unison melting of the protein tertiary and secondary structures. Overall, our findings do not support a direct link between color adjustment and thermodynamic stability in light-harvesting chromoproteins.
Estonian Academy of Sciences Kohtu 6 10130 Tallinn Estonia
Faculty of Science Ibaraki University 310 8512 Mito Japan
Institute of Physics University of Tartu W Ostwaldi 1 50411 Tartu Estonia
See more in PubMed
Chang M.C., Callahan P.M., Parkes-Loach P.S. et al.: Spectroscopic characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. – Biochemistry 29: 421-429, 1990. 10.1021/bi00454a017 PubMed DOI
Cogdell R.J., Isaacs N.W., Freer A.A. et al.: The structure and function of the LH2 (B800–850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. – Prog. Biophys. Mol. Biol. 68: 1-27, 1997. 10.1016/S0079-6107(97)00010-2 PubMed DOI
Di Bari D., Timr S., Guiral M. et al.: Diffusive dynamics of bacterial proteome as a proxy of cell death. – ACS Centr. Sci. 9: 93-102, 2023. 10.1021/acscentsci.2c01078 PubMed DOI PMC
Fiedor L., Scheer H.: Trapping of an assembly intermediate of photosynthetic LH1 antenna beyond B820 subunit: Significance for the assambly of photosynthetic LH1 antenna. – J. Biol. Chem. 280: 20921-20926, 2005. 10.1074/jbc.M501212200 PubMed DOI
Freiberg A., Ellervee A., Kukk P. et al.: Pressure effects on spectra of photosynthetic light-harvesting pigment-protein complexes. – Chem. Phys. Lett. 214: 10-16, 1993. 10.1016/0009-2614(93)85447-V DOI
Freiberg A., Kangur L., Olsen J.D., Hunter C.N.: Structural implications of hydrogen-bond energetics in membrane proteins revealed by high-pressure spectroscopy. – Biophys. J. 103: 2352-2360, 2012. 10.1016/j.bpj.2012.10.030 PubMed DOI PMC
Georgakopoulou S., van der Zwan G., Olsen J.D. et al.: Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes. – J. Phys. Chem. B 110: 3354-3361, 2006. 10.1021/jp0517955 PubMed DOI
Imanishi M., Takenouchi M., Takaichi S. et al.: A dual role for Ca2+ in expanding the spectral diversity and stability of light-harvesting 1 reaction center photocomplexes of purple phototrophic bacteria. – Biochemistry 58: 2844-2852, 2019. 10.1021/acs.biochem.9b00351 PubMed DOI
Kangur L., Rätsep M., Timpmann K. et al.: The two light-harvesting membrane chromoproteins of Thermochromatium tepidum expose distinct robustness against temperature and pressure. – BBA-Bioenergetics 1861: 148205, 2020. 10.1016/j.bbabio.2020.148205 PubMed DOI
Kangur L., Timpmann K., Freiberg A.: Stability of integral membrane proteins against high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria. – J. Phys. Chem. B 112: 7948-7955, 2008. 10.1021/jp801943w PubMed DOI
Kimura Y., Hirano Y., Yu L.-J. et al.: Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. – J. Biol. Chem. 283: 13867-13873, 2008. 10.1074/jbc.M800256200 PubMed DOI
Kimura Y., Tani K., Madigan M.T., Wang-Otomo Z.-Y.: Advances in the spectroscopic and structural characterization of core light-harvesting complexes from purple phototrophic bacteria. – J. Phys. Chem. B 127: 6-17, 2023. 10.1021/acs.jpcb.2c06638 PubMed DOI
Kimura Y., Yu L.-J., Hirano Y. et al.: Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. – J. Biol. Chem. 284: 93-99, 2009. 10.1074/jbc.M806840200 PubMed DOI
Leiger K., Linnanto J.M., Rätsep M. et al.: Controlling photosynthetic excitons by selective pigment photooxidation. – J. Phys. Chem. B 123: 29-38, 2019. 10.1021/acs.jpcb.8b08083 PubMed DOI
Luke K.A., Higgins C.L., Wittung-Stafshede P.: Thermodynamic stability and folding of proteins from hyperthermophilic organisms. – FEBS J. 274: 4023-4033, 2007. 10.1111/j.1742-4658.2007.05955.x PubMed DOI
Matsuo K., Sakurada Y., Yonehara R. et al.: Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. – Biophys. J. 92: 4088-4096, 2007. 10.1529/biophysj.106.103515 PubMed DOI PMC
Michalik M., Zbyradowski M., Heriyanto, Fiedor L.: Tuning the photophysical features of self-assembling photoactive polypeptides for light-harvesting. – Materials 12: 3554, 2019. 10.3390/ma12213554 PubMed DOI PMC
Nozawa T., Trost J.T., Fukada T. et al.: Properties of the reaction center of the thermophilic purple photosynthetic bacterium Chromatium tepidum. – BBA-Bioenergetics 894: 468-476, 1987. 10.1016/0005-2728(87)90126-5 PubMed DOI
Pandit A., van Stokkum I.H.M., Georgakopoulou S. et al.: Investigations of intermediates appearing in the reassociation of the light-harvesting 1 complex of Rhodospirillum rubrum. – Photosynth. Res. 75: 235-248, 2003. 10.1023/A:1023988722299 PubMed DOI
Parkes-Loach P.S., Sprinkle J.R., Loach P.A.: Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated α- and β-polypeptides and bacteriochlorophyll a. – Biochemistry 27: 2718-2727, 1988. 10.1021/bi00408a011 PubMed DOI
Permentier H.P., Neerken S., Overmann J., Amesz J.: A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. – Biochemistry 40: 5573-5578, 2001. 10.1021/bi0024308 PubMed DOI
Polyakov I.V., Khrenova M.G., Moskovsky A.A. et al.: Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls. – Chem. Phys. 505: 34-39, 2018. 10.1016/j.chemphys.2018.03.009 DOI
Puusepp M., Kangur L., Freiberg A.: Dissociation of the light-harvesting membrane protein complex I from Rhodobacter sphaeroides under high hydrostatic pressure. – High Press. Res. 35: 176-180, 2015. 10.1080/08957959.2015.1017817 DOI
Rätsep M., Muru R., Freiberg A.: High temperature limit of photosynthetic excitons. – Nat. Commun. 9: 99, 2018. 10.1038/s41467-017-02544-7 PubMed DOI PMC
Reppert M.: Bioexcitons by design: How do we get there? – J. Phys. Chem. B 127: 1872-1879, 2023. 10.1021/acs.jpcb.2c08787 PubMed DOI
Sancho J.: The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... Plus the structure of the equilibrium intermediates at the same time. – Arch. Biochem. Biophys. 531: 4-13, 2013. 10.1016/j.abb.2012.10.014 PubMed DOI
Smith J.R.L., Calvin M.: Studies of the chemical and photochemical oxidation of bacteriochlorophyll. – J. Am. Chem. Soc. 88: 4500-4506, 1966. 10.1021/ja00971a036 DOI
Štěpánek P., Bouř P.: Multi-scale modeling of electronic spectra of three aromatic amino acids: Importance of conformational averaging and explicit solute–solvent interactions. – Phys. Chem. Chem. Phys. 16: 20639-20649, 2014. 10.1039/C4CP02668C PubMed DOI
Suzuki H., Hirano Y., Kimura Y. et al.: Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. – BBA-Bioenergetics 1767: 1057-1063, 2007. 10.1016/j.bbabio.2007.06.002 PubMed DOI
Tani K., Kanno R., Makino Y. et al.: Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. – Nat. Commun. 11: 4955, 2020. 10.1038/s41467-020-18748-3 PubMed DOI PMC
Timpmann K., Kangur L., Freiberg A.: Hysteretic pressure dependence of Ca2+ binding in LH1 bacterial membrane chromoproteins. – J. Phys. Chem. B 127: 456-464, 2023. 10.1021/acs.jpcb.2c05938 PubMed DOI
Timpmann K., Rätsep M., Kangur L. et al.: Exciton origin of color-tuning in Ca2+-binding photosynthetic bacteria. – Int. J. Mol. Sci. 22: 7338, 2021. 10.3390/ijms22147338 PubMed DOI PMC
Visschers R.W., Nunn R., Calkoen F. et al.: Spectroscopic characterization of B820 subunits from light-harvesting complex I of Rhodospirillum rubrum and Rhodobacter sphaeroides prepared with the detergent n-octyl-rac-2,3-dipropylsulfoxide. – BBA-Bioenergetics 1100: 259-266, 1992. 10.1016/0167-4838(92)90480-2 DOI
Visschers R.W., van Grondelle R., Robert B.: Resonance Raman spectroscopy of the B820 subunit of the core antenna from Rhodospirillum rubrum G9. – BBA-Bioenergetics 1183: 369-373, 1993. 10.1016/0005-2728(93)90241-7 DOI
Yu L.-J., Kawakami T., Kimura Y., Wang-Otomo Z.-Y.: Structural basis for the unusual Qy red-shift and enhanced thermostability of the LH1 complex from Thermochromatium tepidum. – Biochemistry 55: 6495-6504, 2016. 10.1021/acs.biochem.6b00742 PubMed DOI
Yu L.-J., Suga M., Wang-Otomo Z.-Y., Shen J.-R.: Structure of photosynthetic LH1–RC supercomplex at 1.9 Å resolution. – Nature 556: 209-213, 2018. 10.1038/s41586-018-0002-9 PubMed DOI