Novel Inhibitors of Acetyl- and Butyrylcholinesterase Derived from Benzohydrazides: Synthesis, Evaluation and Docking Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19638Y
Czech Science Foundation
SVV 260 547
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000841
ERDF
PubMed
37259322
PubMed Central
PMC9962224
DOI
10.3390/ph16020172
PII: ph16020172
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, benzohydrazide, butyrylcholinesterase, enzyme inhibition, hydrazine-1-carboxamide, molecular docking,
- Publikační typ
- časopisecké články MeSH
On the basis of previous reports, novel 2-benzoylhydrazine-1-carboxamides were designed as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Inhibitors of these enzymes have many clinical applications. 2-(Substituted benzoyl)hydrazine-1-carboxamides decorated with N-methyl or tridecyl were prepared with three methods from commercially available or self-prepared hydrazides and isocyanates. For methyl derivatives, N-succinimidyl N-methylcarbamate was used or methyl isocyanate was prepared via Curtius rearrangement. Tridecyl isocyanate was synthesized again via Curtius rearrangement or from triphosgene and tridecylamine. The compounds were evaluated for the inhibition of AChE and BChE using Ellman's spectrophotometric method. Most of the derivatives showed the dual inhibition of both enzymes with IC50 values of 44-100 µM for AChE and from 22 µM for BChE. In general, the carboxamides inhibited AChE more strongly. A large number of the compounds showed better or quite comparable inhibition of cholinesterases in vitro than that of the drug rivastigmine. Molecular docking was performed to investigate the possible conformation of the compounds and their interactions with target enzymes. In both AChE and BChE, the compounds occupied the enzyme active cavity, and, especially in the case of BChE, the compounds were placed in close proximity to the catalytic triad.
Zobrazit více v PubMed
Patel S.R., Gangwal R., Sangamwar A.T., Jain R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem. 2014;85:255–267. doi: 10.1016/j.ejmech.2014.07.100. PubMed DOI
Krátký M., Baranyai Z., Štěpánková Š., Svrčková K., Švarcová M., Stolaříková J., Horváth L., Bősze S., Vinšová J. N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules. 2020;10:2268. PubMed PMC
Kumar R.S., Arif I.A., Ahamed A., Idhayadhulla A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci. 2016;5:614–662. doi: 10.1016/j.sjbs.2015.07.005. PubMed DOI PMC
Han M.İ., İnce U., Gündüz M.G., Coşkun G.P., Birgül K., Doğan S.D., Küçükgüzel Ş.G. Synthesis, antimicrobial evaluation and molecular modeling studies of novel thiosemicarbazides/semicarbazides derived from p-aminobenzoic acid. J. Mol. Struct. 2022;1261:132907.
Qin J., Liu J., Wu C., Xu J., Tang B., Guo K., Chen X., Liu W., Wu T., Zhou H., et al. Synthesis and biological evaluation of (3/4-(pyrimidin-2-ylamino)benzoyl)-based hydrazine-1-carboxamide/carbothioamide derivatives as novel RXRα antagonists. J. Enzyme Inhib. Med. Chem. 2020;35:880–896. doi: 10.1080/14756366.2020.1740692. PubMed DOI PMC
Chelamalla R., Makula A., Manda S. Design, Synthesis and in silico Studies of New 5-substituted-2-(2-(5-aryl-1H-1,2,4-triazole-3-ylthio) acetyl) Hydrazine Carbothioamide/ Carboxamides for Anticonvulsant Activity. Lett. Drug Des. Discov. 2017;14:1155–1163.
Sharma P., Tripathi A., Tripathi P.N., Singh S.S., Singh S.P., Shrivastava S.K. Novel Molecular Hybrids of N-Benzylpiperidine and 1,3,4-Oxadiazole as Multitargeted Therapeutics to Treat Alzheimer’s Disease. ACS Chem. Neurosci. 2019;10:4361–4384. doi: 10.1021/acschemneuro.9b00430. PubMed DOI
Matošević A., Knežević A., Zandona A., Maraković N., Kovarik Z., Bosak A. Design, Synthesis and Biological Evaluation of Biscarbamates as Potential Selective Butyrylcholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Pharmaceuticals. 2022;15:1220. doi: 10.3390/ph15101220. PubMed DOI PMC
Blanc P. Murray and Nadel’s Textbook of Respiratory Medicine. 6th ed. Elsevier; Philadelphia, PA, USA: 2016. Acute Responses to Toxic Exposures; pp. 1343–1353.e7.
Ayral-Kaloustian S., Mansour T.S., Tsou H.-R., Zhang N., Venkatesan A.M., Di L., Kerns E.H. 3-Substituted-1H-indole, 3-substituted-1H-pyrrolo[2,3-b]pyridine and 3-substituted-1H-pyrrolo[3,2-b]pyridine compounds, their use as mTOR kinase and pi3 kinase inhibitors, and their syntheses. 12/556,833. U.S. Patent. 2010 March 11;
Radic Z., Pickering N.A., Vellom D.C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993;32:12074–12084. PubMed
Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P.H., Silman I., Sussman J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1993;90:9031–9035. doi: 10.1073/pnas.90.19.9031. PubMed DOI PMC
Harel M., Sonoda L.K., Silman I., Sussman J.L., Rosenberry T.L. Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetylcholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site. J. Am. Chem. Soc. 2008;130:7856–7861. doi: 10.1021/ja7109822. PubMed DOI PMC
Rosenberry T.L., Brazzolotto X., Macdonald I.R., Wandhammer M., Trovaslet-Leroy M., Darvesh S., Nachon F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules. 2017;22:2098. doi: 10.3390/molecules22122098. PubMed DOI PMC
Krátký M., Štěpánková Š., Brablíková M., Svrčková K., Švarcová M., Vinšová J. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2020;20:2106–2117. PubMed
Popiołek Ł., Biernasiuk A. Design, synthesis, and in vitro antimicrobial activity of hydrazide–hydrazones of 2-substituted acetic acid. Chem. Biol. Drug. Des. 2016;88:873–883. doi: 10.1111/cbdd.12820. PubMed DOI
Rodrigues D.A., Guerra F.S., Sagrillo F.S., Pinheiro P.S.M., Alves M.A., Thota S., Chaves L.S., Sant’Anna C.M.R., Fernandes P.D., Fraga C.A.M. Design, Synthesis, and Pharmacological Evaluation of First-in-Class Multitarget N-Acylhydrazone Derivatives as Selective HDAC6/8 and PI3Kα Inhibitors. ChemMedChem. 2020;15:539–551. doi: 10.1002/cmdc.201900716. PubMed DOI
Ibrahim T.S., Taher E.S., Samir E., Malebari A.M., Khayyat A.N., Mohamed M.F.A., Bokhtia R.M., AlAwadh M.A., Seliem I.A., Asfour H.Z., et al. In Vitro Antimycobacterial Activity and Physicochemical Characterization of Diaryl Ether Triclosan Analogues as Potential InhA Reductase Inhibitors. Molecules. 2020;25:3125. PubMed PMC
Haranahalli K., Lazzarini C., Sun Y., Zambito J., Pathiranage S., McCarthy J.B., Mallamo J., Del Poeta M., Ojima I. SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents. J. Med. Chem. 2019;62:8249–8273. PubMed PMC
Murty M.S.R., Penthala R., Polepalli S., Jain N. Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents. Med. Chem. Res. 2016;25:627–643. doi: 10.1007/s00044-016-1514-1. DOI
Kahl D.J., Hutchings K.M., Lisabeth E.M., Haak A.J., Leipprandt J.R., Dexheimer T., Khanna D., Tsou P.-S., Campbell P.L., Fox D.A., et al. 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma. J. Med. Chem. 2019;62:4350–4369. PubMed PMC
Takaoka Y., Tsutsumi H., Kasagi N., Nakata E., Hamachi I. One-Pot and Sequential Organic Chemistry on an Enzyme Surface to Tether a Fluorescent Probe at the Proximity of the Active Site with Restoring Enzyme Activity. J. Am. Chem. Soc. 2006;128:3273–3280. PubMed
Sakurai M., Kawakami R., Kihara N. TBSOTf-promoted versatile N-formylation using DMF at room temperature. Tetrahedron Lett. 2019;60:1291–1294. doi: 10.1016/j.tetlet.2019.04.010. DOI
Zhao X., Zhang L., Li T., Liu G., Wang H., Lu K. p-Toluenesulphonic acid-promoted, I2-catalysed sulphenylation of pyrazolones with aryl sulphonyl hydrazides. Chem. Commun. 2014;50:13121–13123. PubMed
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C. 2004;59:293–296. doi: 10.1515/znc-2004-3-430. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC