Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
IK2 CX001680
CSRD VA - United States
R21 MH112956
NIMH NIH HHS - United States
R21 MH098198
NIMH NIH HHS - United States
R01 MH116147
NIMH NIH HHS - United States
R01 MH119227
NIMH NIH HHS - United States
R01 MH110483
NIMH NIH HHS - United States
T32 MH018931
NIMH NIH HHS - United States
R01 MH043454
NIMH NIH HHS - United States
R01 HD071982
NICHD NIH HHS - United States
K01 MH118467
NIMH NIH HHS - United States
IK2 RX000709
RRD VA - United States
P41 EB015922
NIBIB NIH HHS - United States
P30 HD003352
NICHD NIH HHS - United States
R56 MH071537
NIMH NIH HHS - United States
IK2 RX002922
RRD VA - United States
R21 MH098212
NIMH NIH HHS - United States
R01 MH113574
NIMH NIH HHS - United States
K12 HD085850
NICHD NIH HHS - United States
R01 MH071537
NIMH NIH HHS - United States
K01 MH118428
NIMH NIH HHS - United States
R01 MH105355
NIMH NIH HHS - United States
M01 RR000039
NCRR NIH HHS - United States
R01 MH111671
NIMH NIH HHS - United States
R01 MH106574
NIMH NIH HHS - United States
IK1 RX002325
RRD VA - United States
I01 RX000622
RRD VA - United States
U54 EB020403
NIBIB NIH HHS - United States
R01 MH117601
NIMH NIH HHS - United States
UL1 TR000454
NCATS NIH HHS - United States
R56 AG058854
NIA NIH HHS - United States
R01 AG022381
NIA NIH HHS - United States
R01 AG050595
NIA NIH HHS - United States
R01 AG059874
NIA NIH HHS - United States
PubMed
40667083
PubMed Central
PMC12262482
DOI
10.1101/2025.06.16.657725
PII: 2025.06.16.657725
Knihovny.cz E-resources
- Keywords
- Big Data, Mega-analysis, Meta-analysis, Neuroimaging, PTSD, Resting-state fMRI,
- Publication type
- Journal Article MeSH
- Preprint MeSH
The increasing scale and complexity of neuroimaging datasets aggregated from multiple study sites present substantial analytic challenges, as existing statistical analysis tools struggle to handle missing voxel-data, suffer from limited computational speed and inefficient memory allocation, and are restricted in the types of statistical designs they are able to model. We introduce Image-Based Meta- & Mega-Analysis (IBMMA), a novel software package implemented in R and Python that provides a unified framework for analyzing diverse neuroimaging features, efficiently handles large-scale datasets through parallel processing, offers flexible statistical modeling options, and properly manages missing voxel-data commonly encountered in multi-site studies. IBMMA produced stronger effect sizes and revealed findings in brain regions that traditional software overlooked due to missing voxel-data resulting in gaps in brain coverage. IBMMA has the potential to accelerate discoveries in neuroscience and enhance the clinical utility of neuroimaging findings.
Amsterdam UMC University of Amsterdam Psychiatry Amsterdam Neuroscience Amsterdam The Netherlands
Amsterdam UMC Vrije Universiteit Psychiatry Amsterdam Neuroscience Amsterdam The Netherlands
ARQ National Psychotrauma Centre Diemen The Netherlands
Brain Imaging and Analysis Center Duke University Durham NC USA
Center for Behavior Genetics of Aging University of California San Diego La Jolla CA USA
Center for Depression Anxiety and Stress Research McLean Hospital Harvard University Belmont MA USA
Center for Healthy Minds University of Wisconsin Madison Madison WI USA
Center of Excellence for Stress and Mental Health VA San Diego Healthcare System LA Jolla CA USA
Centre for Youth Mental Health The University of Melbourne Parkville Australia
Comprehensive Injury Center Medical College of Wisconsin WI USA
Department of Clinical Psychology University of Groningen Groningen The Netherlands
Department of Clinical Psychology Utrecht University Utrecht The Netherlands
Department of Developmental Psychology University of Amsterdam Amsterdam The Netherlands
Department of Epidemiology Institute of Health and Equity Medical College of Wisconsin WI USA
Department of Experimental Clinical and Health Psychology Ghent University Ghent Belgium
Department of Medical Imaging Jinling Hospital Medical School of Nanjing University Nanjing China
Department of Neuroscience University of Rochester Medical Center Rochester NY USA
Department of Neuroscience Western University London ON Canada
Department of Psychiatry and Behavioral Sciences Emory University School of Medicine Atlanta GA USA
Department of Psychiatry and Behavioral Sciences School of Medicine Duke University Durham NC USA
Department of Psychiatry and Behavioral Sciences Vanderbilt University Medical Center TN USA
Department of Psychiatry Baylor College of Medicine Houston TX USA
Department of Psychiatry Columbia University Medical Center New York NY USA
Department of Psychiatry Harvard Medical School Boston MA USA
Department of Psychiatry Leiden University Medical Center Leiden The Netherlands
Department of Psychiatry Texas A and M University Bryan TX USA
Department of Psychiatry University of California San Diego La Jolla CA USA
Department of Psychiatry University of California San Diego San Diego CA USA
Department of Psychiatry University of Michigan Ann Arbor MI USA
Department of Psychiatry University of Minnesota Minneapolis MN USA
Department of Psychiatry University of Texas at Austin Austin TX USA
Department of Psychiatry University of Toledo Toledo OH USA
Department of Psychiatry University of Wisconsin Madison Madison WI USA
Department of Psychiatry Western University London ON Canada
Department of Psychiatry Yale University School of Medicine New Haven CT USA
Department of Psychology and Neuroscience Baylor University Waco TX USA
Department of Psychology Marquette University Milwaukee WI USA
Department of Psychology University of Arizona Tucson AZ USA
Department of Psychology University of Chinese Academy of Sciences Beijing China
Department of Psychology University of Minnesota Minneapolis MN USA
Department of Psychology University of Wisconsin Madison Madison WI USA
Department of Psychology University of Wisconsin Milwaukee Milwaukee WI USA
Department of Psychology Vanderbilt University TN USA
Department of Radiology Washington University School of Medicine St Louis MO USA
Dept of Psychological and Brain Sciences Boston University Boston MA USA
Division of Depression and Anxiety Disorders McLean Hospital Belmont MA USA
Division of Trauma and Acute Care Surgery Department of Surgery Medical College of Wisconsin WI USA
Division of Womens Mental Health McLean Hospital Belmont MA USA
German Center for Mental Health partner site Mannheim Heidelberg Ulm
Institute for Technology in Psychiatry McLean Hospital Belmont MA USA
Institute of Medical Psychology and Systems Neuroscience University of Mu nster Mu nster Germany
Leiden Institute for Brain and Cognition Leiden The Netherlands
Minneapolis VA Health Care System Minneapolis MN USA
Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Nanjing China
Neuroscience Research Australia Randwick NSW Australia
New York State Psychiatric Institute New York NY USA
School of Medicine and Public Health University of Wisconsin Madison Madison WI USA
School of Psychology University of New South Wales Sydney NSW Australia
Tel Aviv University Tel Aviv Yafo Israel
Université de Tours INSERM Imaging Brain and Neuropsychiatry iBraiN U1253 37032 Tours France
University Medical Centre Charité Berlin Germany
University of Haifa Haifa Israel
University of Nebraska Medical Center Munroe Meyer Institute Omaha NE USA
See more in PubMed
Cox R. W. (1996). AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Computers and Biomedical Research, 29(3), 162–173. 10.1006/cbmr.1996.0014 PubMed DOI
Esteban O., Markiewicz C. J., Blair R. W., Moodie C. A., Isik A. I., Erramuzpe A., Kent J. D., Goncalves M., DuPre E., Snyder M., Oya H., Ghosh S. S., Wright J., Durnez J., Poldrack R. A., & Gorgolewski K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116. 10.1038/s41592-018-0235-4 PubMed DOI PMC
Hall J. A., & Rosenthal R. (2018). Choosing between random effects models in meta-analysis: Units of analysis and the generalizability of obtained results. Social and Personality Psychology Compass, 12(10), e12414. 10.1111/spc3.12414 DOI
Jenkinson M., Beckmann C. F., Behrens T. E. J., Woolrich M. W., & Smith S. M. (2012). FSL. NeuroImage, 62(2), 782–790. 10.1016/j.neuroimage.2011.09.015 PubMed DOI
Maullin-Sapey T., & Nichols T. E. (2022). BLMM: Parallelised computing for big linear mixed models. Neuroimage, 264, 119729. 10.1016/j.neuroimage.2022.119729 PubMed DOI PMC
Mulugeta G., Eckert M. A., Vaden K. I., Johnson T. D., & Lawson A. B. (2017). Methods for the Analysis of Missing Data in FMRI Studies. Journal of Biometrics & Biostatistics, 8(1), 335. 10.4172/2155-6180.1000335 PubMed DOI PMC
Nelson T. D., Brock R. L., Yokum S., Tomaso C. C., Savage C. R., & Stice E. (2021). Much Ado About Missingness: A Demonstration of Full Information Maximum Likelihood Estimation to Address Missingness in Functional Magnetic Resonance Imaging Data. Frontiers in Neuroscience, 15, 746424. 10.3389/fnins.2021.746424 PubMed DOI PMC
Nichols T., Brett M., Andersson J., Wager T., & Poline J.-B. (2005). Valid conjunction inference with the minimum statistic. NeuroImage, 25(3), 653–660. 10.1016/j.neuroimage.2004.12.005 PubMed DOI
Pruim R. H. R., Mennes M., van Rooij D., Llera A., Buitelaar J. K., & Beckmann C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277. 10.1016/j.neuroimage.2015.02.064 PubMed DOI
Radua J., Vieta E., Shinohara R., Kochunov P., Quidé Y., Green M. J., Weickert C. S., Weickert T., Bruggemann J., Kircher T., Nenadić I., Cairns M. J., Seal M., Schall U., Henskens F., Fullerton J. M., Mowry B., Pantelis C., Lenroot R., … ENIGMA Consortium collaborators. (2020). Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage, 218, 116956. 10.1016/j.neuroimage.2020.116956 PubMed DOI PMC
Salo T., Yarkoni T., Nichols T. E., Poline J.-B., Bilgel M., Bottenhorn K. L., Eickhoff S. B., Jarecka D., Kent J. D., Kimbler A., Nielson D. M., Oudyk K. M., Peraza J. A., Pérez A., Reeders P. C., Yanes J. A., & Laird A. R. (2023). NiMARE: Neuroimaging Meta-Analysis Research Environment. Aperture Neuro, 3, 1–32. 10.52294/001c.87681 DOI
Schmaal L., Pozzi E., C. Ho T., van Velzen L. S., Veer I. M., Opel N., Van Someren E. J. W., Han L. K. M., Aftanas L., Aleman A., Baune B. T., Berger K., Blanken T. F., Capitão L., Couvy-Duchesne B., R. Cullen K., Dannlowski U., Davey C., Erwin-Grabner T., … Veltman D. J. (2020). ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing. Translational Psychiatry, 10(1), 1–19. 10.1038/s41398-020-0842-6 PubMed DOI PMC
Schottdorf M., Yu G., & Walker E. Y. (2024). Data science and its future in large neuroscience collaborations. Neuron, 112(18), 3007–3012. 10.1016/j.neuron.2024.08.017 PubMed DOI PMC
Smith S. M., & Nichols T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98. 10.1016/j.neuroimage.2008.03.061 PubMed DOI
Spisák T., Spisák Z., Zunhammer M., Bingel U., Smith S., Nichols T., & Kincses T. (2019). Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. NeuroImage, 185, 12–26. 10.1016/j.neuroimage.2018.09.078 PubMed DOI PMC
Sun D., Rakesh G., Haswell C. C., Logue M., Baird C. L., O’Leary E. N., Cotton A. S., Xie H., Tamburrino M., Chen T., Dennis E. L., Jahanshad N., Salminen L. E., Thomopoulos S. I., Rashid F., Ching C. R. K., Koch S. B. J., Frijling J. L., Nawijn L., … Morey R. A. (2022). A comparison of methods to harmonize cortical thickness measurements across scanners and sites. NeuroImage, 261, 119509. 10.1016/j.neuroimage.2022.119509 PubMed DOI PMC
Thompson P. M., Jahanshad N., Ching C. R. K., Salminen L. E., Thomopoulos S. I., Bright J., Baune B. T., Bertolín S., Bralten J., Bruin W. B., Bülow R., Chen J., Chye Y., Dannlowski U., de Kovel C. G. F., Donohoe G., Eyler L. T., Faraone S. V., Favre P., … ENIGMA Consortium. (2020). ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10(1), 100. 10.1038/s41398-020-0705-1 PubMed DOI PMC
Vaden K. I., Gebregziabher M., Kuchinsky S. E., & Eckert M. A. (2012). Multiple imputation of missing fMRI data in whole brain analysis. NeuroImage, 60(3), 1843–1855. 10.1016/j.neuroimage.2012.01.123 PubMed DOI PMC
Waller L., Erk S., Pozzi E., Toenders Y. J., Haswell C. C., Büttner M., Thompson P. M., Schmaal L., Morey R. A., Walter H., & Veer I. M. (2022). ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data. Human Brain Mapping, 43(9), 2727–2742. 10.1002/hbm.25829 PubMed DOI PMC
Whitfield-Gabrieli S., & Nieto-Castanon A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. 10.1089/brain.2012.0073 PubMed DOI