N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19638Y
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
NKFIH-1157-8/2019-DT
Eötvös Loránd Tudományegyetem
PubMed
32408517
PubMed Central
PMC7287908
DOI
10.3390/molecules25102268
PII: molecules25102268
Knihovny.cz E-zdroje
- Klíčová slova
- 4-(trifluoromethyl)benzohydrazide, acetylcholinesterase inhibition, antimycobacterial activity, butyrylcholinesterase inhibition, cytostatic properties, hydrazides,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antiinfekční látky * chemická syntéza chemie farmakologie MeSH
- buňky Hep G2 MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory * chemická syntéza chemie farmakologie MeSH
- GPI-vázané proteiny metabolismus MeSH
- imidazoly * chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- Mycobacterium avium růst a vývoj MeSH
- Mycobacterium kansasii růst a vývoj MeSH
- Mycobacterium tuberculosis růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- ACHE protein, human MeSH Prohlížeč
- antiinfekční látky * MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory * MeSH
- GPI-vázané proteiny MeSH
- imidazoly * MeSH
Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).
Zobrazit více v PubMed
Lima L.M., Barreiro E.J. Bioisosterism: A Useful Strategy for Molecular Modification and Drug Design. Curr. Med. Chem. 2005;12:23–49. doi: 10.2174/0929867053363540. PubMed DOI
Hamada Y., Kiso Y. The application of bioisosteres in drug design for novel drug discovery: Focusing on acid protease inhibitors. Expert Opin. Drug Discov. 2012;7:903–922. doi: 10.1517/17460441.2012.712513. PubMed DOI
Bonandi E., Christodoulou M.S., Fumagalli G., Perdicchia D., Rastelli G., Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today. 2017;22:1572–1581. doi: 10.1016/j.drudis.2017.05.014. PubMed DOI
Krátký M., Bősze S., Baranyai Z., Stolaříková J., Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017;27:5185–5189. doi: 10.1016/j.bmcl.2017.10.050. PubMed DOI
Jamadar A., Duhme-Klair A.K., Vemuri K., Sritharan M., Dandawatec P., Padhye S. Synthesis, characterisation and antitubercular activities of a series of pyruvate-containing aroylhydrazones and their Cu-complexes. Dalton Trans. 2012;41:9192–9201. doi: 10.1039/c2dt30322a. PubMed DOI
Vavříková E., Polanc S., Kočevar M., Horváti K., Bősze S., Stolaříková J., Vávrová K., Vinšová J. New fluorine-containing hydrazones active against MDR-tuberculosis. Eur. J. Med. Chem. 2011;46:4937–4945. doi: 10.1016/j.ejmech.2011.07.052. PubMed DOI
He X., Zhong M., Zhang T., Wu W., Wu Z., Yang J., Xiao Y., Pan Z., Qiu G., Hu X. Synthesis and anticonvulsant activity of N-3-arylamide substituted 5,5-cyclopropanespirohydantoin derivatives. Eur. J. Med. Chem. 2010;45:5870–5877. doi: 10.1016/j.ejmech.2010.09.052. PubMed DOI
He X., Zhong M., Zhang T., Wu W., Wu Z., Xiao Y., Hu X. Synthesis and anticonvulsant activity of ethyl 1-(2-arylhydrazinecarboxamido)-2,2-dimethylcyclopropanecarboxylate derivatives. Eur. J. Med. Chem. 2012;54:542–548. doi: 10.1016/j.ejmech.2012.05.037. PubMed DOI
Zhang L., Shi L., Soars S.M., Kamps J., Yin H. Discovery of Novel Small-Molecule Inhibitors of NF-κB Signaling with Antiinflammatory and Anticancer Properties. J. Med. Chem. 2018;61:5881–5899. doi: 10.1021/acs.jmedchem.7b01557. PubMed DOI
Kalinowski D.S., Sharpe P.C., Bernhardt P.V., Richardson D.R. Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series. J. Med. Chem. 2008;51:331–344. doi: 10.1021/jm7012562. PubMed DOI
Vosátka R., Krátký M., Švarcová M., Janoušek J., Stolaříková J., Madacki J., Huszár S., Mikušová K., Korduláková J., Trejtnar F., et al. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur. J. Med. Chem. 2018;151:824–835. doi: 10.1016/j.ejmech.2018.04.017. PubMed DOI
Rychtarčíková Z., Krátký M., Gazvoda M., Komlóová M., Polanc S., Kočevar M., Stolaříková J., Vinšová J. N-Substituted 2-Isonicotinoylhydrazinecarboxamides — New Antimycobacterial Active Molecules. Molecules. 2014;19:3851–3868. doi: 10.3390/molecules19043851. PubMed DOI PMC
Krátký M., Štěpánková Š., Houngbedji N.-H., Vosátka R., Vorčáková K., Vinšová J. 2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules. 2019;9:698. doi: 10.3390/biom9110698. PubMed DOI PMC
Rahim F., Ullah H., Taha M., Wadood A., Javed M.T., Rehman W., Nawaz M., Ashraf M., Ali M., Sajid M., et al. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorg. Chem. 2016;68:30–40. doi: 10.1016/j.bioorg.2016.07.005. PubMed DOI
Krátký M., Štěpánková Š., Vorčáková K., Švarcová M., Vinšová J. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates. Molecules. 2016;21:191. doi: 10.3390/molecules21020191. PubMed DOI PMC
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Nat. C. 2004;59:293–296. PubMed
Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC
Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Torre B.G., Albericio F. The Pharmaceutical Industry in 2019. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules. 2020;25:745. doi: 10.3390/molecules25030745. PubMed DOI PMC
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. doi: 10.1016/j.ab.2007.07.023. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Krátký M., Vinšová J., Novotná E., Mandíková J., Trejtnar F., Stolaříková J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)-benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC