5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and Butyrylcholinesterase Inhibition and Docking Study

. 2022 Mar 25 ; 15 (4) : . [epub] 20220325

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35455397

Grantová podpora
20-19638Y Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841 ERDF
SVV 260 547 Charles University

2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g., to treat dementias and myasthenia gravis. 5-Aryl-1,3,4-oxadiazoles decorated with dodecyl linked via nitrogen, sulfur or directly to this heterocycle have been designed as potential inhibitors of AChE and BChE. They were prepared from commercially available or in-house prepared hydrazides by reaction with dodecyl isocyanate to form hydrazine-1-carboxamides 2 (yields 67-98%) followed by cyclization using p-toluenesulfonyl chloride and triethylamine in 41-100% yields. Thiadiazole isostere was also synthesized. The derivatives were screened for inhibition of AChE and BChE using Ellman's spectrophotometric method. The compounds showed a moderate dual inhibition with IC50 values of 12.8-99.2 for AChE and from 53.1 µM for BChE. All the heterocycles were more efficient inhibitors of AChE. The most potent inhibitor, N-dodecyl-5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine 3t, was subjected to advanced reversibility and type of inhibition evaluation. Structure-activity relationships were identified. Many oxadiazoles showed lower IC50 values against AChE than established drug rivastigmine. According to molecular docking, the compounds interact non-covalently with AChE and BChE and block entry into enzyme gorge and catalytic site, respectively.

Zobrazit více v PubMed

Bennion B.J., Law R.J., Fattebert J.L., Schwegler E., Lightstone F.C. Modeling the binding of CWAs to human AChE and BuChE. Mil. Med. Sci. Lett. 2013;8:102–114. doi: 10.31482/mmsl.2013.015. DOI

Taylor P., Radic Z., Hosea N.A., Camp S., Marchot P., Berman H.A. Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicol. Lett. 1995;82:453–458. doi: 10.1016/0378-4274(95)03575-3. PubMed DOI

Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Stedman E., Easson L.H. Choline-esterase. An enzyme present in the blood-serum of the horse. Biochem. J. 1932;26:2056–2066. doi: 10.1042/bj0262056. PubMed DOI PMC

Darvesh S., Hopkins D.A., Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003;4:131–138. doi: 10.1038/nrn1035. PubMed DOI

Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–223. doi: 10.5507/bp.2011.036. PubMed DOI

Price D.L., Koliatsos V.E., Clatterbuck R.C. Cholinergic systems: Human diseases, animal models, and prospects for therapy. Prog. Brain Res. 1993;98:51–60. PubMed

Ohno K., Engel A.G., Brengman J.M., Shen X.M., Heidenreich F., Vincent A., Milone M., Tan E., Demirci M., Walsh P., et al. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann. Neurol. 2000;47:162–170. doi: 10.1002/1531-8249(200002)47:2<162::AID-ANA5>3.0.CO;2-Q. PubMed DOI

Vincent A. Immunology of the neuromuscular junction and presynaptic nerve terminal. Curr. Opin. Neurol. 1999;12:545–551. doi: 10.1097/00019052-199910000-00008. PubMed DOI

Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010;494:107–120. doi: 10.1016/j.abb.2009.12.005. PubMed DOI PMC

Jbilo O., Bartels C.F., Chatonnet A., Toutant J.P., Lockridge O. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger-RNA. Toxicon. 1994;32:1445–1457. doi: 10.1016/0041-0101(94)90416-2. PubMed DOI

Kumar V., Saha A., Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Comput. Biol. Chem. 2020;88:107355. doi: 10.1016/j.compbiolchem.2020.107355. PubMed DOI

Sharma S., Sharma P.K., Kumar N., Dudhe R.A. Review: Oxadiazole Their Chemistry and Pharmacological Potentials. Pharma Chem. 2010;2:253–263.

Patel K.D., Prajapati S.M., Panchal S.N., Patel H.D. Review of synthesis of 1,3,4-oxadiazole derivatives. Synth. Commun. 2014;44:1859–1875. doi: 10.1080/00397911.2013.879901. DOI

Boström J., Hogner A., Llinàs A., Wellner E., Plowright A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem. 2012;55:1817–1830. doi: 10.1021/jm2013248. PubMed DOI

Nayak S.G., Poojary B. A Review on the Preparation of 1,3,4-Oxadiazoles from the Dehydration of Hydrazines and Study of Their Biological Roles. Chem. Afr. 2019;2:551–571. doi: 10.1007/s42250-019-00084-9. DOI

Khalilullah H., Ahsan M.J., Hedaitullah M., Khan S., Ahmed B. 1,3,4-Oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem. 2012;12:789–801. doi: 10.2174/138955712801264800. PubMed DOI

Chawla G. 1,2,4-Oxadiazole as a Privileged Scaffold for Anti-inflammatory and Analgesic Activities: A Review. Mini Rev. Med. Chem. 2018;18:1536–1547. doi: 10.2174/1389557518666180524112050. PubMed DOI

Verma G., Khan M.F., Akhtar W., Alam M.M., Akhter M., Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev. Med. Chem. 2019;19:477–509. doi: 10.2174/1389557518666181015152433. PubMed DOI

Vosátka R., Krátký M., Švarcová M., Janoušek J., Stolaříková J., Madacki J., Huszár S., Mikušová K., Korduláková J., Trejtnar F., et al. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur. J. Med. Chem. 2018;151:824–835. doi: 10.1016/j.ejmech.2018.04.017. PubMed DOI

Guimaraes C.R.W., Boger D.L., Jorgensen W.L. Elucidation of Fatty Acid Amide Hydrolase Inhibition by Potent α-Ketoheterocycle Derivatives from Monte Carlo Simulations. J. Am. Chem. Soc. 2005;127:17377. doi: 10.1021/ja055438j. PubMed DOI

Kareem R.T., Abedinifar F., Mahmood E.A., Ebadi A.G., Rajabi F., Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: Highlights from 2010 to 2020. RSC Adv. 2021;11:30781. doi: 10.1039/D1RA03718H. PubMed DOI PMC

Tripathi A., Choubey P.K., Sharma P., Seth A., Tripathi P.N., Tripathi M.K., Prajapati S.K., Krishnamurthy S., Shrivastava S.K. Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles as potential multifunctional agents to treat Alzheimer’s disease. Eur. J. Med. Chem. 2019;183:111707. doi: 10.1016/j.ejmech.2019.111707. PubMed DOI

Mishra P., Sharma P., Tripathi P.N., Gupta S.K., Srivastava P., Seth A., Tripathi A., Krishnamurthy S., Shrivastava S.K. Design and development of 1,3,4-oxadiazole derivatives as potential inhibitors of acetylcholinesterase to ameliorate scopolamine-induced cognitive dysfunctions. Bioorg. Chem. 2019;89:103025. doi: 10.1016/j.bioorg.2019.103025. PubMed DOI

Wang L., Wu Y.-R., Ren S.-T., Yin L., Liu X.-J., Cheng F.-C., Liu W.-W., Shi D.-H., Cao Z.-L., Sun H.-M. Synthesis and bioactivity of novel C2-glycosyl oxadiazole derivatives as acetylcholinesterase inhibitors. Heterocycl. Comm. 2018;24:333–338. doi: 10.1515/hc-2018-0166. DOI

Bingul M., Saglam M.F., Kandemir H., Boga M., Sengul I.F. Synthesis of indole-2-carbohydrazides and 2-(indol-2-yl)-1,3,4-oxadiazoles as antioxidants and their acetylcholinesterase inhibition properties. Monatsh. Chem. 2019;150:1553–1560. doi: 10.1007/s00706-019-02462-y. DOI

Krátký M., Baranyai Z., Štěpánková Š., Svrčková K., Švarcová M., Stolaříková J., Horváth L., Bősze S., Vinšová J. N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules. 2020;25:2268. doi: 10.3390/molecules25102268. PubMed DOI PMC

Krátký M., Štěpánková Š., Brablíková M., Svrčková K., Švarcová M., Vinšová J. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2020;20:2106–2117. doi: 10.2174/1568026620666200819155503. PubMed DOI

Yusufzai S.K., Khan M.S., Sulaiman O., Osman H., Lamjin D.N. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem. Cent. J. 2018;12:128. doi: 10.1186/s13065-018-0497-z. PubMed DOI PMC

Ahmad R., Iqbal R., Akhtar H., Zia-ul-Haq, Duddeck H., Stefaniak L., Sitkowski J. Synthesis and structure determination of some oxadiazole-2-thione and triazole-3-thione galactosides. Nucleosides Nucleotides Nucleic Acids. 2001;20:1671–1682. doi: 10.1081/NCN-100105903. PubMed DOI

Ujan R., Saeed A., Channar P.A., Larik F.A., Abbas Q., Alajmi M.F., El-Seedi H.R., Rind M.A., Hassan M., Raza H., et al. Drug-1,3,4-Thiadiazole Conjugates as Novel Mixed-Type Inhibitors of Acetylcholinesterase: Synthesis, Molecular Docking, Pharmacokinetics, and ADMET Evaluation. Molecules. 2019;24:860. doi: 10.3390/molecules24050860. PubMed DOI PMC

Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A. 2007;1144:102–110. doi: 10.1016/j.chroma.2006.11.029. PubMed DOI

Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Karabanovich G., Zemanová J., Smutný T., Székely R., Šarkan M., Centárová I., Vocat A., Pávková I., Čonka P., Němeček J., et al. Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2016;59:2362–2380. doi: 10.1021/acs.jmedchem.5b00608. PubMed DOI

Yu W., Huang G., Zhang Y., Liu H., Dong L., Yu X., Li Y., Chang J. I2-Mediated Oxidative C–O Bond Formation for the Synthesis of 1,3,4-Oxadiazoles from Aldehydes and Hydrazides. J. Org. Chem. 2013;78:10337–10343. doi: 10.1021/jo401751h. PubMed DOI

Hearn M.J., Cynamon M.H., Chen M.F., Coppins R., Davis J., Kang H.J.O., Noble A., Tu-Sekine B., Terrot M.S., Trombino D., et al. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. Eur. J. Med. Chem. 2009;44:4169–4178. doi: 10.1016/j.ejmech.2009.05.009. PubMed DOI PMC

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Nat. C. 2004;59:293–296. PubMed

Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. doi: 10.1016/j.ab.2007.07.023. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...