5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and Butyrylcholinesterase Inhibition and Docking Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19638Y
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841
ERDF
SVV 260 547
Charles University
PubMed
35455397
PubMed Central
PMC9029695
DOI
10.3390/ph15040400
PII: ph15040400
Knihovny.cz E-zdroje
- Klíčová slova
- 1,3,4-oxadiazole, 1,3,4-thiadiazole, acetylcholinesterase, butyrylcholinesterase, enzyme inhibition, molecular docking,
- Publikační typ
- časopisecké články MeSH
2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g., to treat dementias and myasthenia gravis. 5-Aryl-1,3,4-oxadiazoles decorated with dodecyl linked via nitrogen, sulfur or directly to this heterocycle have been designed as potential inhibitors of AChE and BChE. They were prepared from commercially available or in-house prepared hydrazides by reaction with dodecyl isocyanate to form hydrazine-1-carboxamides 2 (yields 67-98%) followed by cyclization using p-toluenesulfonyl chloride and triethylamine in 41-100% yields. Thiadiazole isostere was also synthesized. The derivatives were screened for inhibition of AChE and BChE using Ellman's spectrophotometric method. The compounds showed a moderate dual inhibition with IC50 values of 12.8-99.2 for AChE and from 53.1 µM for BChE. All the heterocycles were more efficient inhibitors of AChE. The most potent inhibitor, N-dodecyl-5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine 3t, was subjected to advanced reversibility and type of inhibition evaluation. Structure-activity relationships were identified. Many oxadiazoles showed lower IC50 values against AChE than established drug rivastigmine. According to molecular docking, the compounds interact non-covalently with AChE and BChE and block entry into enzyme gorge and catalytic site, respectively.
Zobrazit více v PubMed
Bennion B.J., Law R.J., Fattebert J.L., Schwegler E., Lightstone F.C. Modeling the binding of CWAs to human AChE and BuChE. Mil. Med. Sci. Lett. 2013;8:102–114. doi: 10.31482/mmsl.2013.015. DOI
Taylor P., Radic Z., Hosea N.A., Camp S., Marchot P., Berman H.A. Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicol. Lett. 1995;82:453–458. doi: 10.1016/0378-4274(95)03575-3. PubMed DOI
Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Stedman E., Easson L.H. Choline-esterase. An enzyme present in the blood-serum of the horse. Biochem. J. 1932;26:2056–2066. doi: 10.1042/bj0262056. PubMed DOI PMC
Darvesh S., Hopkins D.A., Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003;4:131–138. doi: 10.1038/nrn1035. PubMed DOI
Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–223. doi: 10.5507/bp.2011.036. PubMed DOI
Price D.L., Koliatsos V.E., Clatterbuck R.C. Cholinergic systems: Human diseases, animal models, and prospects for therapy. Prog. Brain Res. 1993;98:51–60. PubMed
Ohno K., Engel A.G., Brengman J.M., Shen X.M., Heidenreich F., Vincent A., Milone M., Tan E., Demirci M., Walsh P., et al. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann. Neurol. 2000;47:162–170. doi: 10.1002/1531-8249(200002)47:2<162::AID-ANA5>3.0.CO;2-Q. PubMed DOI
Vincent A. Immunology of the neuromuscular junction and presynaptic nerve terminal. Curr. Opin. Neurol. 1999;12:545–551. doi: 10.1097/00019052-199910000-00008. PubMed DOI
Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010;494:107–120. doi: 10.1016/j.abb.2009.12.005. PubMed DOI PMC
Jbilo O., Bartels C.F., Chatonnet A., Toutant J.P., Lockridge O. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger-RNA. Toxicon. 1994;32:1445–1457. doi: 10.1016/0041-0101(94)90416-2. PubMed DOI
Kumar V., Saha A., Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Comput. Biol. Chem. 2020;88:107355. doi: 10.1016/j.compbiolchem.2020.107355. PubMed DOI
Sharma S., Sharma P.K., Kumar N., Dudhe R.A. Review: Oxadiazole Their Chemistry and Pharmacological Potentials. Pharma Chem. 2010;2:253–263.
Patel K.D., Prajapati S.M., Panchal S.N., Patel H.D. Review of synthesis of 1,3,4-oxadiazole derivatives. Synth. Commun. 2014;44:1859–1875. doi: 10.1080/00397911.2013.879901. DOI
Boström J., Hogner A., Llinàs A., Wellner E., Plowright A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem. 2012;55:1817–1830. doi: 10.1021/jm2013248. PubMed DOI
Nayak S.G., Poojary B. A Review on the Preparation of 1,3,4-Oxadiazoles from the Dehydration of Hydrazines and Study of Their Biological Roles. Chem. Afr. 2019;2:551–571. doi: 10.1007/s42250-019-00084-9. DOI
Khalilullah H., Ahsan M.J., Hedaitullah M., Khan S., Ahmed B. 1,3,4-Oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem. 2012;12:789–801. doi: 10.2174/138955712801264800. PubMed DOI
Chawla G. 1,2,4-Oxadiazole as a Privileged Scaffold for Anti-inflammatory and Analgesic Activities: A Review. Mini Rev. Med. Chem. 2018;18:1536–1547. doi: 10.2174/1389557518666180524112050. PubMed DOI
Verma G., Khan M.F., Akhtar W., Alam M.M., Akhter M., Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev. Med. Chem. 2019;19:477–509. doi: 10.2174/1389557518666181015152433. PubMed DOI
Vosátka R., Krátký M., Švarcová M., Janoušek J., Stolaříková J., Madacki J., Huszár S., Mikušová K., Korduláková J., Trejtnar F., et al. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur. J. Med. Chem. 2018;151:824–835. doi: 10.1016/j.ejmech.2018.04.017. PubMed DOI
Guimaraes C.R.W., Boger D.L., Jorgensen W.L. Elucidation of Fatty Acid Amide Hydrolase Inhibition by Potent α-Ketoheterocycle Derivatives from Monte Carlo Simulations. J. Am. Chem. Soc. 2005;127:17377. doi: 10.1021/ja055438j. PubMed DOI
Kareem R.T., Abedinifar F., Mahmood E.A., Ebadi A.G., Rajabi F., Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: Highlights from 2010 to 2020. RSC Adv. 2021;11:30781. doi: 10.1039/D1RA03718H. PubMed DOI PMC
Tripathi A., Choubey P.K., Sharma P., Seth A., Tripathi P.N., Tripathi M.K., Prajapati S.K., Krishnamurthy S., Shrivastava S.K. Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles as potential multifunctional agents to treat Alzheimer’s disease. Eur. J. Med. Chem. 2019;183:111707. doi: 10.1016/j.ejmech.2019.111707. PubMed DOI
Mishra P., Sharma P., Tripathi P.N., Gupta S.K., Srivastava P., Seth A., Tripathi A., Krishnamurthy S., Shrivastava S.K. Design and development of 1,3,4-oxadiazole derivatives as potential inhibitors of acetylcholinesterase to ameliorate scopolamine-induced cognitive dysfunctions. Bioorg. Chem. 2019;89:103025. doi: 10.1016/j.bioorg.2019.103025. PubMed DOI
Wang L., Wu Y.-R., Ren S.-T., Yin L., Liu X.-J., Cheng F.-C., Liu W.-W., Shi D.-H., Cao Z.-L., Sun H.-M. Synthesis and bioactivity of novel C2-glycosyl oxadiazole derivatives as acetylcholinesterase inhibitors. Heterocycl. Comm. 2018;24:333–338. doi: 10.1515/hc-2018-0166. DOI
Bingul M., Saglam M.F., Kandemir H., Boga M., Sengul I.F. Synthesis of indole-2-carbohydrazides and 2-(indol-2-yl)-1,3,4-oxadiazoles as antioxidants and their acetylcholinesterase inhibition properties. Monatsh. Chem. 2019;150:1553–1560. doi: 10.1007/s00706-019-02462-y. DOI
Krátký M., Baranyai Z., Štěpánková Š., Svrčková K., Švarcová M., Stolaříková J., Horváth L., Bősze S., Vinšová J. N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules. 2020;25:2268. doi: 10.3390/molecules25102268. PubMed DOI PMC
Krátký M., Štěpánková Š., Brablíková M., Svrčková K., Švarcová M., Vinšová J. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2020;20:2106–2117. doi: 10.2174/1568026620666200819155503. PubMed DOI
Yusufzai S.K., Khan M.S., Sulaiman O., Osman H., Lamjin D.N. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem. Cent. J. 2018;12:128. doi: 10.1186/s13065-018-0497-z. PubMed DOI PMC
Ahmad R., Iqbal R., Akhtar H., Zia-ul-Haq, Duddeck H., Stefaniak L., Sitkowski J. Synthesis and structure determination of some oxadiazole-2-thione and triazole-3-thione galactosides. Nucleosides Nucleotides Nucleic Acids. 2001;20:1671–1682. doi: 10.1081/NCN-100105903. PubMed DOI
Ujan R., Saeed A., Channar P.A., Larik F.A., Abbas Q., Alajmi M.F., El-Seedi H.R., Rind M.A., Hassan M., Raza H., et al. Drug-1,3,4-Thiadiazole Conjugates as Novel Mixed-Type Inhibitors of Acetylcholinesterase: Synthesis, Molecular Docking, Pharmacokinetics, and ADMET Evaluation. Molecules. 2019;24:860. doi: 10.3390/molecules24050860. PubMed DOI PMC
Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A. 2007;1144:102–110. doi: 10.1016/j.chroma.2006.11.029. PubMed DOI
Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI
Karabanovich G., Zemanová J., Smutný T., Székely R., Šarkan M., Centárová I., Vocat A., Pávková I., Čonka P., Němeček J., et al. Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2016;59:2362–2380. doi: 10.1021/acs.jmedchem.5b00608. PubMed DOI
Yu W., Huang G., Zhang Y., Liu H., Dong L., Yu X., Li Y., Chang J. I2-Mediated Oxidative C–O Bond Formation for the Synthesis of 1,3,4-Oxadiazoles from Aldehydes and Hydrazides. J. Org. Chem. 2013;78:10337–10343. doi: 10.1021/jo401751h. PubMed DOI
Hearn M.J., Cynamon M.H., Chen M.F., Coppins R., Davis J., Kang H.J.O., Noble A., Tu-Sekine B., Terrot M.S., Trombino D., et al. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. Eur. J. Med. Chem. 2009;44:4169–4178. doi: 10.1016/j.ejmech.2009.05.009. PubMed DOI PMC
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Nat. C. 2004;59:293–296. PubMed
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. doi: 10.1016/j.ab.2007.07.023. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC