N-substituted 2-isonicotinoylhydrazinecarboxamides--new antimycobacterial active molecules

. 2014 Mar 28 ; 19 (4) : 3851-68. [epub] 20140328

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24686575

This report presents a new modification of the isoniazid (INH) structure linked with different anilines via a carbonyl group obtained by two synthetic procedures and with N-substituted 5-(pyridine-4-yl)-1,3,4-oxadiazole-2-amines prepared by their cyclisation. All synthesised derivatives were characterised by IR, NMR, MS and elemental analyses and were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv, Mycobacterium avium 330/88, Mycobacterium kansasii 235/80 and one clinical isolated strain of M. kansasii 6509/96. 2-Isonicotinoyl-N-(4-octylphenyl)hydrazinecarboxamide displayed an in vitro efficacy comparable to that of INH for M. tuberculosis with minimum inhibitory concentrations (MICs) of 1-2 μM. Among the halogenated derivatives, the best anti-tuberculosis activity was found for 2-isonicotinoyl-N-(2,4,6-trichlorophenyl)hydrazinecarboxamide (MIC=4 μM). In silico modelling on the enoyl-acyl carrier protein reductase InhA confirmed that longer alkyl substituents are advantageous for the interactions and affinity to InhA. Most of the hydrazinecarboxamides, especially those derived from 4-alkylanilines, exhibited significant activity against INH-resistant nontuberculous mycobacteria.

Zobrazit více v PubMed

WHO Global Tuberculosis Report 2013. [(accessed on 26 February 2014)]. Available online: http://www.who.int/tb/publications/global_report/en/

Wong E.B., Cohen K.A., Bishai W.R. Rising to the challenge: New therapies for tuberculosis. Trends Microbiol. 2013;21:493–501. PubMed PMC

Wang J.Y., Burger R.M., Drlica K. Role of superoxide in catalase-peroxidase-mediated isoniazid action against mycobacteria. Antimicrob. Agents Chemother. 1998;42:709–711. PubMed PMC

Vinšová J., Imramovský A., Jampílek J., Monreal J.F., Doležal M. Recent Advances on Isoniazide Derivatives. Anti-Infect. Agents Med. Chem. 2008;7:1–20. doi: 10.2174/187152108783329816. DOI

Schroeder E.K., de Souza O.N., Santos D.S., Blanchard J.S., Basso L.A. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr. Pharm. Biotechnol. 2002;3:197–225. doi: 10.2174/1389201023378328. PubMed DOI

Scior T., Garcés-Eisele S.J. Isoniazid is not a lead compound for its pyridyl ring derivatives, Isonicotinoyl amides, hydrazides, and hydrazones: A Critical Review. Curr. Med. Chem. 2006;13:2205–2219. doi: 10.2174/092986706777935249. PubMed DOI

Bernardes-Génisson V., Deraeve C., Chollet A., Bernadou J., Pratviel G. Isoniazid: An uptake on the multiple mechanisms for a singular action. Curr. Med. Chem. 2013;20:4370–4385. doi: 10.2174/15672050113109990203. PubMed DOI

Judge V., Narasimhan B., Ahuja M. Isoniazid: The magic molecule. Med. Chem. Res. 2012;21:3940–3957. doi: 10.1007/s00044-011-9948-y. DOI

Imramovský A., Polanc S., Vinšová J., Kočevar M., Jampílek J., Rečková Z., Kaustová J. A new modification of anti-tubercular active molecules. Bioorg. Med. Chem. 2007;15:2551–2559. doi: 10.1016/j.bmc.2007.01.051. PubMed DOI

Vavříková E., Polanc S., Kočevar M., Košmrlj J., Horváti K., Bősze S., Stolaříková J., Imramovský A., Vinšová J. New series of isoniazid hydrazones linked with electron-withdrawing substituents. Eur. J. Med. Chem. 2011;46:5902–5909. doi: 10.1016/j.ejmech.2011.09.054. PubMed DOI

Vavříková E., Polanc S., Kočevar M., Horváti K., Bősze S., Stolaříková J., Vávrová K., Vinšová J. New fluorine-containing hydrazones active against MDR-tuberculosis. Eur. J. Med. Chem. 2011;46:4937–4945. doi: 10.1016/j.ejmech.2011.07.052. PubMed DOI

Sriram D., Yogeeswari P., Priya D.Y. Antimycobacterial activity of novel N-(substituted)-2-isonicotinoylhydrazinocarbothioamide endowed with high activity towards isoniazid resistant tuberculosis. Biomed. Pharmacother. 2009;63:36–39. doi: 10.1016/j.biopha.2008.01.012. PubMed DOI

Navarrete-Vázquez G., Molina-Salinas G.M., Duarte-Fajardo Z.V., Vargas-Villarreal J., Estrada-Soto S., Gonzalez-Salazar F., Hernandez-Nunez E., Said-Fernandes S. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg. Med. Chem. 2007;15:5502–5508. doi: 10.1016/j.bmc.2007.05.053. PubMed DOI

Košmrlj J., Kočevar M., Polanc S. A Mild Approach to 1,3,4-Oxadiazoles and Fused 1,2,4-Triazoles. Diazenes as Intermediates? Synlett. 1996:652–654.

Ventura C., Martins F. Application of Quantitative Structure-Activity Relationships to the Modeling of Antitubercular Compounds. 1. The Hydrazide Family. J. Med. Chem. 2008;51:612–624. doi: 10.1021/jm701048s. PubMed DOI

Ahsan M.J., Samy J.G., Khalilullah H., Nomani M.S., Saraswat P., Gaur R., Singh A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2011;21:7246–7250. doi: 10.1016/j.bmcl.2011.10.057. PubMed DOI

Rane R.A., Gutte S.D., Sahu N.U. Synthesis and evaluation of novel 1,3,4-oxadiazole derivatives of marine bromopyrrole alkaloids as antimicrobial agent. Bioorg. Med. Chem. Lett. 2012;22:6429–6432. doi: 10.1016/j.bmcl.2012.08.061. PubMed DOI

Foks H., Mieczkowska J., Janowiec M., Zwolska Z., Andrzejczyk Z. Synthesis and tuberculostatic activity of methyl 3-isonicotinoyldithiocarbazate and S,S'-dimethyldithiocarbonate isonicotinoylhydrazone and their reactions with amines and hydrazines. Chem. Heterocycl. Comp. 2002;38:810–816. doi: 10.1023/A:1020681604052. DOI

Patel M.B., Modi N.R., Raval J.P., Menon S.K. Calix[4]arene based 1,3,4-oxadiazole and thiadiazole derivatives: Design, synthesis, and biological evaluation. Org. Biomol. Chem. 2012;10:1785–1794. doi: 10.1039/c2ob06730g. PubMed DOI

Dessen A., Quemard A., Blanchard J.S., Jacobs W.R., Sacchettini J.C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995;267:1638–1641. doi: 10.1126/science.7886450. PubMed DOI

Quemard A., Sacchettini J.C., Dessen A., Vilcheze C., Bittman R., Jacobs W.R., Blanchard J.S. Enzymatic Characterization of the Target for Isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995;34:8235–8241. doi: 10.1021/bi00026a004. PubMed DOI

Rozwarski D.A., Vilcheze C., Sugantino M., Bittman R., Sacchettini J.C. Crystal Structure of the Mycobacterium tuberculosis Enoyl-ACP Reductase, InhA, in Complex with NAD1 and a C16 Fatty Acyl Substrate. J. Biol. Chem. 1999;274:15582–15589. PubMed

Xie Y.Y., Liu J.L., Yang P., Shi X.J., Li J.J. Synthesis of 2-amino-1,3,4-oxadiazoles from isoselenocyanates via cyclodeselenization. Tetrahedron. 2011;67:5369–5374. doi: 10.1016/j.tet.2011.05.100. DOI

Kaustová J. Quantitative micromethod for drug susceptibility testing of mycobacteria in Sula’s medium. Klin. Microbiol. Inf. Lek. 1997;3:115–124.

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI

DeLano W.L. The PyMol Molecular Graphics System. Schrodinger, LLC; [(accessed on 23 March 2014)]. Version 1.1r1. Available online: http://www.pymol.org.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...