Design and Synthesis of Highly Active Antimycobacterial Mutual Esters of 2-(2-Isonicotinoylhydrazineylidene)propanoic Acid

. 2021 Dec 14 ; 14 (12) : . [epub] 20211214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34959704

Grantová podpora
20-19638Y Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund
NU21-05-00482 Ministry of Health of the Czech Republic
SVV 260 547 Charles University
APVV-19-0189 Slovak Research and Development Agency

The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 μM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.

Zobrazit více v PubMed

WHO Tuberculosis and COVID-19. 2020. [(accessed on 13 October 2021)]. Available online: https://www.who.int/teams/global-tuberculosis-programme/covid-19.

WHO Global Tuberculosis Report 2020. 2021. [(accessed on 13 October 2021)]. Available online: https://apps.who.int/iris/rest/bitstreams/1312164/retrieve.

WHO Tuberculosis. 2020. [(accessed on 13 October 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis.

Timmins G.S., Deretic V. Mechanisms of action of isoniazid. Mol. Biol. 2006;62:1220–1227. doi: 10.1111/j.1365-2958.2006.05467.x. PubMed DOI

Vilchèze C., Jacobs W.R., Jr. The mechanism of isoniazid killing: Clarity through the scope of genetic. Annu. Rev. Microbiol. 2007;61:35–50. doi: 10.1146/annurev.micro.61.111606.122346. PubMed DOI

Lempens P., Meehan C.J., Vandelannoote K., Fissette K., de Rijk P., Van Deun A., Rigouts L., de Jong B.C. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci. Rep. 2018;8:3246. doi: 10.1038/s41598-018-21378-x. PubMed DOI PMC

Hazbón M.H., Brimacombe M., del Valle M.B., Cavatore M., Guerrero M.I., Varma-Basil M., Billman-Jacobe H., Lavender C., Fyfe J., García-García L., et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2006;50:2640–2649. doi: 10.1128/AAC.00112-06. PubMed DOI PMC

Martins F., Ventura S.C., Elvas-Leitao R., Santos L., Vitorino S., Reis M., Miranda V., Correia H.E., Aires-de-Sousa J., Kovalishyn V., et al. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur. J. Med. Chem. 2014;81:119–138. doi: 10.1016/j.ejmech.2014.04.077. PubMed DOI

Shtyrlin N.V., Khaziev R.M., Shtyrlin V.G., Gilyazetdinov E.M., Agafonova M.N., Usachev K.S., Islamov D.R., Klimovitskii A.E., Vinogradova T.I., Dogonadze M.Z., et al. Isonicotinoyl hydrazones of pyridoxine derivatives: Synthesis and antimycobacterial activity. Med. Chem. Res. 2021;30:952–963. doi: 10.1007/s00044-021-02705-w. DOI

Scior T., Garcés-Eisele S.J. Isoniazid is not a lead compound for its pyridyl ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: A critical review. Curr. Med. Chem. 2006;13:2205–2219. doi: 10.2174/092986706777935249. PubMed DOI

Manav M., Manu A., Abdul S., Kapendra S., Priyanka P., Aakash D. Synthesis and evaluation of some novel derivatives of 2-propoxybenzylideneisonicotinohydrazide for their potential antimicrobial activity. J. Serb. Chem. Soc. 2012;77:589–597.

Kratky M., Vinsova J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Krátký M., Vinšová J., Novotná E., Stolaříková J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci. 2014;53:1–9. doi: 10.1016/j.ejps.2013.12.001. PubMed DOI

Pflégr V., Horváth L., Stolaříková J., Pál A., Korduláková J., Bősze S., Vinšová J., Krátký M. Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. Eur. J. Med. Chem. 2021;223:113668. doi: 10.1016/j.ejmech.2021.113668. PubMed DOI

Zampieri D., Mamolo M.G., Vio L., Romano M., Skoko N., Baralle M., Pau V., De Logu A. Antimycobacterial activity of new N1-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives. Bioorg. Med. Chem. Lett. 2016;26:3287–3290. doi: 10.1016/j.bmcl.2016.05.053. PubMed DOI

Mantu D., Antoci V., Moldoveanu C., Zbancioc G., Mangalagiu I.I. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzym. Inhib. Med. Chem. 2016;31:96–103. doi: 10.1080/14756366.2016.1190711. PubMed DOI

Antoci V., Cucu D., Zbancioc G., Moldoveanu C., Mangalagiu V., Amariucai-Mantu D., Aricu A., Mangalagiu I.I. Bis-(imidazole/benzimidazole)-pyridine derivatives: Synthesis, structure and antimycobacterial activity. Future Med. Chem. 2020;12:207–222. doi: 10.4155/fmc-2019-0063. PubMed DOI PMC

Krátký M., Stolaříková J., Vinšová J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem. 2017;25:1839–1845. doi: 10.1016/j.bmc.2017.01.045. PubMed DOI

Kryukova L.M., Zelenin K.N., Értevtsian L.N., Dobrego V.A. Synthesis and bacteriostatic activity of thiosemicarbazones and isonicotinoylhydrazones of pyruvic acid. Pharm. Chem. J. 1977;11:1609–1611. doi: 10.1007/BF00778278. DOI

Shingnapurkar D., Dandawate P., Anson C.E., Powell A.K., Afrasiabi Z., Sinn E., Pandit S., Venkateswara Swamy K., Franzblau S., Padhye S. Synthesis and characterization of pyruvate–isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorg. Med. Chem. Lett. 2012;22:3172–3176. doi: 10.1016/j.bmcl.2012.03.047. PubMed DOI

Larsen M.H., Vilchèze C., Kremer L., Besra G.S., Parsons L., Salfinger M., Heifets L., Hazbon M.H., Alland D., Sacchettini J.C., et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol. Microbiol. 2002;46:453–466. doi: 10.1046/j.1365-2958.2002.03162.x. PubMed DOI

Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI

Phetsuksiri B., Baulard A.R., Cooper A.M., Minnikin D.E., Douglas J.D., Besra G.S., Brennan P.J. Antimycobacterial Activities of Isoxyl and New Derivatives through the Inhibition of Mycolic Acid Synthesis. Antimicrob. Agents Chemother. 1999;43:1042–1051. doi: 10.1128/AAC.43.5.1042. PubMed DOI PMC

Mazlun M.H., Sabran S.F., Mohamed M., Abu Bakar M.F., Abdullah Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules. 2019;24:2449. doi: 10.3390/molecules24132449. PubMed DOI PMC

Bennett E.O. Factors Affecting the Antimicrobial Activity of Phenols. Adv. Appl. Microbiol. 1959;1:123–140. PubMed

Andrade-Ochoa S., Nevárez-Moorillón G.V., Sánchez-Torres L.E., Villanueva-García M., Sánchez-Ramírez B.E., Rodríguez-Valdez L.M., Rivera-Chavira B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complementary Altern. Med. 2015;15:332. doi: 10.1186/s12906-015-0858-2. PubMed DOI PMC

Chahine E.B., Karaoui L.R., Mansour H. Bedaquiline: A novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 2013;48:107–115. doi: 10.1177/1060028013504087. PubMed DOI

Darby C.M., Nathan C.F. Killing of non-replicating Mycobacterium tuberculosis by 8-hydroxyquinoline. J. Antimicrob. Chemother. 2010;65:1424–1427. doi: 10.1093/jac/dkq145. PubMed DOI

Vosátka R., Krátký M., Vinšová J. Triclosan and its derivatives as antimycobacterial active agents. Eur. J. Pharm. Sci. 2018;114:318–331. doi: 10.1016/j.ejps.2017.12.013. PubMed DOI

Zimmermann P., Curtis N. Antimicrobial Effects of Antipyretics. Antimicrob. Agents Chemother. 2017;61:e02268-16. doi: 10.1128/AAC.02268-16. PubMed DOI PMC

Feng M., Tang B., Liang S.H., Jiang X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016;16:1200–1216. doi: 10.2174/1568026615666150915111741. PubMed DOI PMC

Mewada N.S., Shah D.R., Lakum H.P., Chikhalia K.H. Synthesis and biological evaluation of novel s-triazine based aryl/heteroaryl entities: Design, rationale and comparative study. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016;20:8–18. doi: 10.1016/j.jaubas.2014.08.003. DOI

Lin P.L., Dartois V., Johnston P.J., Janssen C., Via L., Goodwin M.B., Klein E., Barry C.E., Flynn J.L. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Natl. Acad. Sci. USA. 2012;109:14188–14193. doi: 10.1073/pnas.1121497109. PubMed DOI PMC

Carroll M.W., Jeon D., Mountz J.M., Lee J.D., Jeong Y.J., Zia N., Lee M., Lee J., Via L.E., Lee S., et al. Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis. Antimicrob. Agents Chemother. 2013;57:3903–3909. doi: 10.1128/AAC.00753-13. PubMed DOI PMC

Rychtarčíková Z., Krátký M., Gazvoda M., Komlóová M., Polanc S., Kočevar M., Stolaříková J., Vinšová J. N-Substituted 2-Isonicotinoylhydrazinecarboxamides—New Antimycobacterial Active Molecules. Molecules. 2014;19:3851–3868. doi: 10.3390/molecules19043851. PubMed DOI PMC

Lei S., Gu R., Ma X. Clinical perspectives of isoniazid-induced liver injury. Liver Res. 2021;5:45–52. doi: 10.1016/j.livres.2021.02.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace