Design and Synthesis of Highly Active Antimycobacterial Mutual Esters of 2-(2-Isonicotinoylhydrazineylidene)propanoic Acid
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19638Y
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
NU21-05-00482
Ministry of Health of the Czech Republic
SVV 260 547
Charles University
APVV-19-0189
Slovak Research and Development Agency
PubMed
34959704
PubMed Central
PMC8703412
DOI
10.3390/ph14121302
PII: ph14121302
Knihovny.cz E-zdroje
- Klíčová slova
- InhA, antimycobacterial activity, enzyme inhibition, esters, isoniazid, mechanism of action, mutual prodrugs,
- Publikační typ
- časopisecké články MeSH
The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 μM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.
Zobrazit více v PubMed
WHO Tuberculosis and COVID-19. 2020. [(accessed on 13 October 2021)]. Available online: https://www.who.int/teams/global-tuberculosis-programme/covid-19.
WHO Global Tuberculosis Report 2020. 2021. [(accessed on 13 October 2021)]. Available online: https://apps.who.int/iris/rest/bitstreams/1312164/retrieve.
WHO Tuberculosis. 2020. [(accessed on 13 October 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis.
Timmins G.S., Deretic V. Mechanisms of action of isoniazid. Mol. Biol. 2006;62:1220–1227. doi: 10.1111/j.1365-2958.2006.05467.x. PubMed DOI
Vilchèze C., Jacobs W.R., Jr. The mechanism of isoniazid killing: Clarity through the scope of genetic. Annu. Rev. Microbiol. 2007;61:35–50. doi: 10.1146/annurev.micro.61.111606.122346. PubMed DOI
Lempens P., Meehan C.J., Vandelannoote K., Fissette K., de Rijk P., Van Deun A., Rigouts L., de Jong B.C. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci. Rep. 2018;8:3246. doi: 10.1038/s41598-018-21378-x. PubMed DOI PMC
Hazbón M.H., Brimacombe M., del Valle M.B., Cavatore M., Guerrero M.I., Varma-Basil M., Billman-Jacobe H., Lavender C., Fyfe J., García-García L., et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2006;50:2640–2649. doi: 10.1128/AAC.00112-06. PubMed DOI PMC
Martins F., Ventura S.C., Elvas-Leitao R., Santos L., Vitorino S., Reis M., Miranda V., Correia H.E., Aires-de-Sousa J., Kovalishyn V., et al. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur. J. Med. Chem. 2014;81:119–138. doi: 10.1016/j.ejmech.2014.04.077. PubMed DOI
Shtyrlin N.V., Khaziev R.M., Shtyrlin V.G., Gilyazetdinov E.M., Agafonova M.N., Usachev K.S., Islamov D.R., Klimovitskii A.E., Vinogradova T.I., Dogonadze M.Z., et al. Isonicotinoyl hydrazones of pyridoxine derivatives: Synthesis and antimycobacterial activity. Med. Chem. Res. 2021;30:952–963. doi: 10.1007/s00044-021-02705-w. DOI
Scior T., Garcés-Eisele S.J. Isoniazid is not a lead compound for its pyridyl ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: A critical review. Curr. Med. Chem. 2006;13:2205–2219. doi: 10.2174/092986706777935249. PubMed DOI
Manav M., Manu A., Abdul S., Kapendra S., Priyanka P., Aakash D. Synthesis and evaluation of some novel derivatives of 2-propoxybenzylideneisonicotinohydrazide for their potential antimicrobial activity. J. Serb. Chem. Soc. 2012;77:589–597.
Kratky M., Vinsova J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Krátký M., Vinšová J., Novotná E., Stolaříková J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci. 2014;53:1–9. doi: 10.1016/j.ejps.2013.12.001. PubMed DOI
Pflégr V., Horváth L., Stolaříková J., Pál A., Korduláková J., Bősze S., Vinšová J., Krátký M. Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. Eur. J. Med. Chem. 2021;223:113668. doi: 10.1016/j.ejmech.2021.113668. PubMed DOI
Zampieri D., Mamolo M.G., Vio L., Romano M., Skoko N., Baralle M., Pau V., De Logu A. Antimycobacterial activity of new N1-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives. Bioorg. Med. Chem. Lett. 2016;26:3287–3290. doi: 10.1016/j.bmcl.2016.05.053. PubMed DOI
Mantu D., Antoci V., Moldoveanu C., Zbancioc G., Mangalagiu I.I. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzym. Inhib. Med. Chem. 2016;31:96–103. doi: 10.1080/14756366.2016.1190711. PubMed DOI
Antoci V., Cucu D., Zbancioc G., Moldoveanu C., Mangalagiu V., Amariucai-Mantu D., Aricu A., Mangalagiu I.I. Bis-(imidazole/benzimidazole)-pyridine derivatives: Synthesis, structure and antimycobacterial activity. Future Med. Chem. 2020;12:207–222. doi: 10.4155/fmc-2019-0063. PubMed DOI PMC
Krátký M., Stolaříková J., Vinšová J. Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorg. Med. Chem. 2017;25:1839–1845. doi: 10.1016/j.bmc.2017.01.045. PubMed DOI
Kryukova L.M., Zelenin K.N., Értevtsian L.N., Dobrego V.A. Synthesis and bacteriostatic activity of thiosemicarbazones and isonicotinoylhydrazones of pyruvic acid. Pharm. Chem. J. 1977;11:1609–1611. doi: 10.1007/BF00778278. DOI
Shingnapurkar D., Dandawate P., Anson C.E., Powell A.K., Afrasiabi Z., Sinn E., Pandit S., Venkateswara Swamy K., Franzblau S., Padhye S. Synthesis and characterization of pyruvate–isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorg. Med. Chem. Lett. 2012;22:3172–3176. doi: 10.1016/j.bmcl.2012.03.047. PubMed DOI
Larsen M.H., Vilchèze C., Kremer L., Besra G.S., Parsons L., Salfinger M., Heifets L., Hazbon M.H., Alland D., Sacchettini J.C., et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol. Microbiol. 2002;46:453–466. doi: 10.1046/j.1365-2958.2002.03162.x. PubMed DOI
Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Phetsuksiri B., Baulard A.R., Cooper A.M., Minnikin D.E., Douglas J.D., Besra G.S., Brennan P.J. Antimycobacterial Activities of Isoxyl and New Derivatives through the Inhibition of Mycolic Acid Synthesis. Antimicrob. Agents Chemother. 1999;43:1042–1051. doi: 10.1128/AAC.43.5.1042. PubMed DOI PMC
Mazlun M.H., Sabran S.F., Mohamed M., Abu Bakar M.F., Abdullah Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules. 2019;24:2449. doi: 10.3390/molecules24132449. PubMed DOI PMC
Bennett E.O. Factors Affecting the Antimicrobial Activity of Phenols. Adv. Appl. Microbiol. 1959;1:123–140. PubMed
Andrade-Ochoa S., Nevárez-Moorillón G.V., Sánchez-Torres L.E., Villanueva-García M., Sánchez-Ramírez B.E., Rodríguez-Valdez L.M., Rivera-Chavira B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complementary Altern. Med. 2015;15:332. doi: 10.1186/s12906-015-0858-2. PubMed DOI PMC
Chahine E.B., Karaoui L.R., Mansour H. Bedaquiline: A novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 2013;48:107–115. doi: 10.1177/1060028013504087. PubMed DOI
Darby C.M., Nathan C.F. Killing of non-replicating Mycobacterium tuberculosis by 8-hydroxyquinoline. J. Antimicrob. Chemother. 2010;65:1424–1427. doi: 10.1093/jac/dkq145. PubMed DOI
Vosátka R., Krátký M., Vinšová J. Triclosan and its derivatives as antimycobacterial active agents. Eur. J. Pharm. Sci. 2018;114:318–331. doi: 10.1016/j.ejps.2017.12.013. PubMed DOI
Zimmermann P., Curtis N. Antimicrobial Effects of Antipyretics. Antimicrob. Agents Chemother. 2017;61:e02268-16. doi: 10.1128/AAC.02268-16. PubMed DOI PMC
Feng M., Tang B., Liang S.H., Jiang X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016;16:1200–1216. doi: 10.2174/1568026615666150915111741. PubMed DOI PMC
Mewada N.S., Shah D.R., Lakum H.P., Chikhalia K.H. Synthesis and biological evaluation of novel s-triazine based aryl/heteroaryl entities: Design, rationale and comparative study. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016;20:8–18. doi: 10.1016/j.jaubas.2014.08.003. DOI
Lin P.L., Dartois V., Johnston P.J., Janssen C., Via L., Goodwin M.B., Klein E., Barry C.E., Flynn J.L. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Natl. Acad. Sci. USA. 2012;109:14188–14193. doi: 10.1073/pnas.1121497109. PubMed DOI PMC
Carroll M.W., Jeon D., Mountz J.M., Lee J.D., Jeong Y.J., Zia N., Lee M., Lee J., Via L.E., Lee S., et al. Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis. Antimicrob. Agents Chemother. 2013;57:3903–3909. doi: 10.1128/AAC.00753-13. PubMed DOI PMC
Rychtarčíková Z., Krátký M., Gazvoda M., Komlóová M., Polanc S., Kočevar M., Stolaříková J., Vinšová J. N-Substituted 2-Isonicotinoylhydrazinecarboxamides—New Antimycobacterial Active Molecules. Molecules. 2014;19:3851–3868. doi: 10.3390/molecules19043851. PubMed DOI PMC
Lei S., Gu R., Ma X. Clinical perspectives of isoniazid-induced liver injury. Liver Res. 2021;5:45–52. doi: 10.1016/j.livres.2021.02.001. DOI
Synthesis and Antimycobacterial Activity of Isoniazid Derivatives Tethered with Aliphatic Amines